

Steven L. Beshear Governor Frankfort, Kentucky 40622 www.transportation.ky.gov/

Michael W. Hancock, P.E. Secretary

November 26, 2013

CALL NO. 200 CONTRACT ID NO. 131212 ADDENDUM # 1

Subject: Marshall-Trigg Counties, 121GR13D012-NHPP 0801 (098)

Letting December 20, 2013

(1) Revised - Plan Sheets - Structure Plans Drawing #24686 -

S2,S7,S10,S37,S40,S67,S137,S145,S156-S161,S181,

S183,S184,S262-S264,S268,S270-S275

(2) Revised - Special Roadway Plan Notes - Pages 23 & 25 of 403

(3) Revised - Special Notes for Kentucky Lake Bridge Project - Pages 62-63,

96-98, 106-107, 113, 155, 162-163, & 182

(4) Added - Wage Rates - Pages 376(a) -376(j) of 403

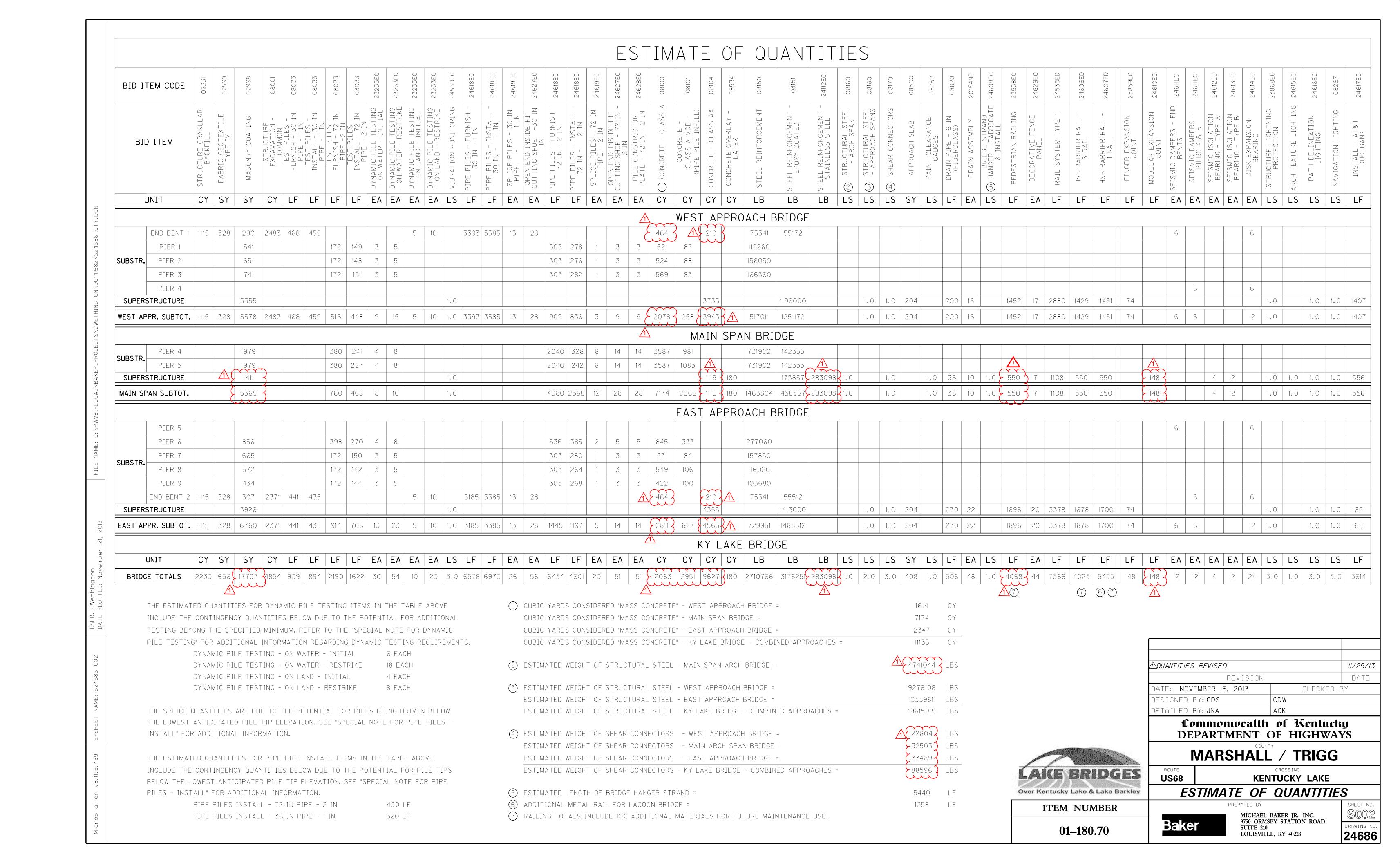
(5) Revised - Bid Items - Pages 397-403 of 403

Plan revisions are available at http://www.lynnimaging.com/kytransportation/.

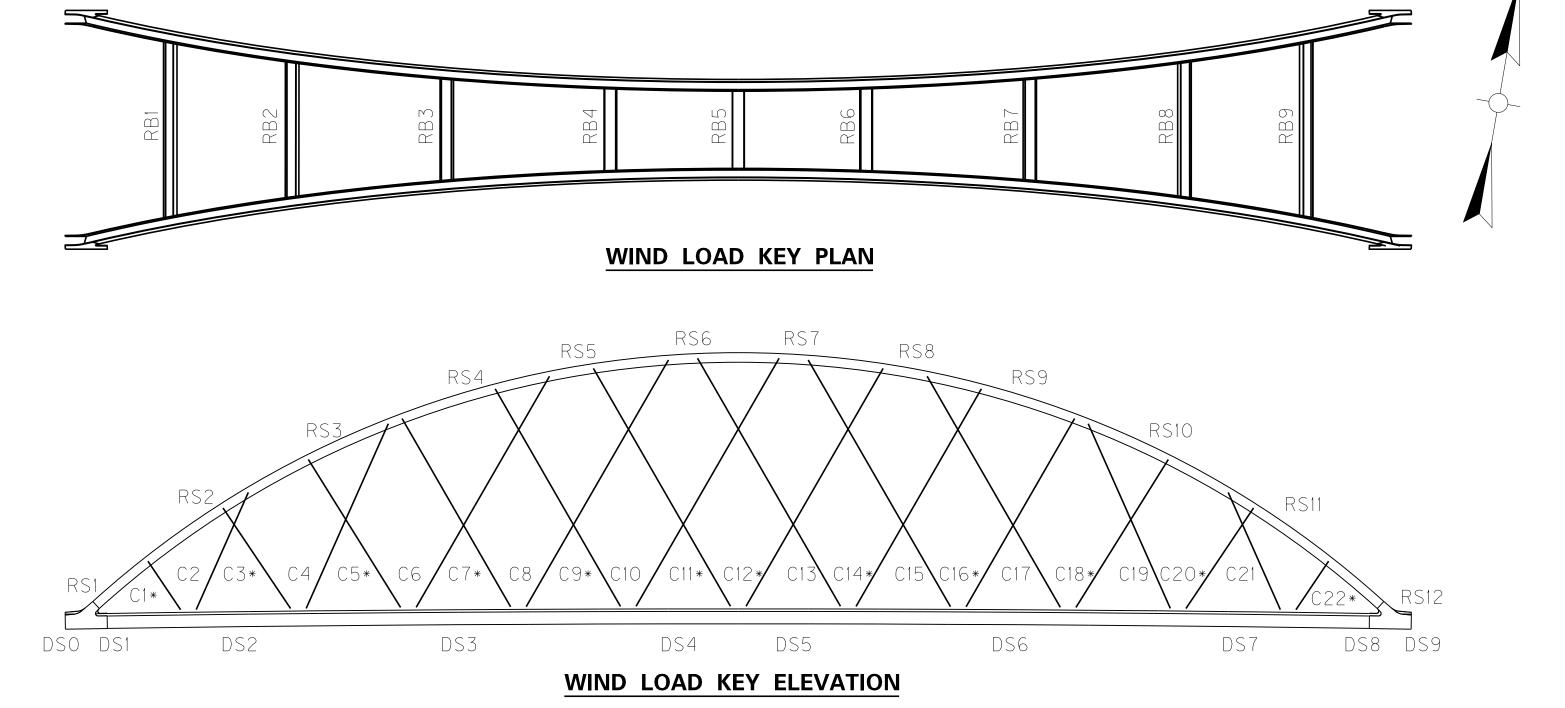
If you have any questions, please contact us at 502-564-3500.

Sincerely,

Ryan Griffith Acting Director


Division of Construction Procurement

RG:ks


Enclosures

												ES	TIV	1 A T E	E OF	QL	JAN	TITI	ES																
BID ITEM CODE	02231	08001	08033	08033 23233EC	23233EC 23233EC	23233EC 24550EC	24618EC	24618EC 24619EC	24627EC	24618EC 24618EC	24619EC	24628EC	08100	08101	08104	08150	08151	24112EC	08160	08170	08500	08820	20154ND 24608EC	23538EC	24629EC	24606ED	24607ED	23859EC	24610EC	24611EC 24611EC	24612EC	24614EC	23868EC	24616EC	
	A H (ZZZ	Z	ING ING ING ING ING	I K E I N C			$Z \vdash Z$		Z F		A SS		4 .	⊢ Z			I JSN	SAC	1.1		D TE	9		= 1	1		Z		Z	- m	9 N L		
	AANUL SANUL SATIL	TURE 10N 10N 10N 10N 10N 10N 10N 10N 10N 10N	LES - 30 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	LES - 72 IN	TEST RESTF TEST INITI,	TEST ESTR IITOR	INANI S	NSTAL 1 IN 1 30 1 30	10E F	URNIS IN ISTAL SIN	- 72 IN IDE F	2) - (Z	CLAS	TE - MOD INFI	ASS	SCEME	CEMEN	STEEL STEEL	SPAN SPAN L STI H SP4	VECT(SLAB	(SS)	MBLY TRAN ABRIC	ALL	L E N C	RAIL	RAIL	OISN	ANSI	TS - X S S S S S S S S S S S S S S S S S	ATIO YPE,	YPE F	CHTN:	ATIO	l
BID ITEM	RE GF CKFIL CEOT GEOT 'PE I	FRUC COMN COMN ST PI	PE - ALL PE - PE - PE - PE - PE -	ST P1 ALL PE - PILE ER -	PILE - I	PILE D - R		S - I ILES	SHOE		ILES INS INS	NSTE	- 3L3	SS A PILE	E 0 V A T E X	INFO	NFOR Y COA	NFOR ESS	ARCH TUR/ ROAC	0000)ACH CLEA	PIPE FRGL /	ASSE OGE S	INST NAI	TIVE ANEL	A LEM	RAIL	EXP/	Z EXP OINT	AMPE ENTS DAM		G - T XPAN ARIN	RECT TECT		
	BAIC TYPE TYPE TANK	EXOS EXOS EXOS EXOS EXOS EXOS EXOS EXOS	TINST FUNCTION OF THE PROPERTY	INST INST MIC WAT	MIC MIC LAN	MIC LANIC	PILE 30 I	PILE 30 IN CE P		PILE:			I	CC CLA PIPE	CRET	——————————————————————————————————————	REI	AINL	TRUC APP	HEAR	PPRC TNI	AIN F	RAIN BRIC	ESTR	CORA	BAR	BAR	16ER J	UL AF	AIC D B SMIC PIER	SMIC	ARIN ISK E BE	PRO FEAT		- - - -
	STRU	₹		V	ANYO ANYO	DYNA - ON VIBR,		SPLI	OPE	IPE IPE	SPLI				CONC	STEE		STEEL			4 4	DR	4H (2)	PED	DE(HSS	HSS		MOD	SEISN	SEI BE	BE O	STRL	4 d	-
UNIT	CY SY S	Y CY LF	LF LF	LF EA	EA EA	EA LS	LF	LF EA	EA	LF LF	EA E	A EA	A CY	CY	CY CY	LB	LB	LB L	S LS		SY LS	S LF	EA LS	LF	EA L	F LF	LF	LF	LF	EA EA	EA E	.A EA	LS L:	S LS	L
					,			·		•		•		WEST	APPRO	DACH E	BRIDGE		•							·	•			•					
END BENT 1	1115 328 29	90 2483 468	3 459		5	10	3393 3	3585 13	28				464		210	75341	55172													6		6			
PIER 1	54	41		149 3	5						1 -	3 3	521	87		119260																			
SUBSTR. PIER 2	6!	J1	112	110 9	5					303 210	1	3 3	524	88		130030																			
PIER 3 PIER 4	7.	41	172	151 3	5					303 282	1	3 3	569	83		166360														6					
SUPERSTRUCTURE	33	55				1.0)							-	3733		1196000		1.0	1.0	204	200	16	1452	17 28	80 1429	9 1451	74					1.0	1.0	1.
WEST APPR. SUBTOT.	1115 328 55	78 2483 468	3 459 516	448 9	15 5	10 1.0	3393 3	3585 13	28	909 836	3	9 9	2078	258 3	3943	517011	1251172		1.0	1.0	204	200	16	1452	17 28	80 1429	9 1451	74		6 6		12	1.0	1.0	1.
														MA	IN SPA	N BRI	DGE																		
PIER 4	19	79	380	241 4	8				2	2040 1326	6 1	4 14	3587	981		731902																			
SUBSTR. PIER 5	19	79	380	227 4	8				2	2040 1242	6 1	4 14	3587	1085		731902	142355																		
SUPERSTRUCTURE	14					1.0											173857	283098 1.	0	1.0									148		4 :		1.0 1.0		
MAIN SPAN SUBTOT.	53	69	17				08 550	550		148		4 .	-	1.0 1.0	0 1.0																				
PIER 5														EASI	APPRU	JACH E	RIDGE													6		6			
PIER 6	85	56	398	270 4	8				[536 385	2 5	5 5	845	337		277060																			
SUBSTR. PIER 7	66	55	172	150 3	5				-	303 280	1 5	3 3	531	84		157850																			
PIER 8	57				5							3 3	549	106																					
PIER 9 END BENT 2	1115 328 30			144 3	5	10	7105 7	7705 17		303 268	1 -	3 3			210		EEE10																		
SUPERSTRUCTURE		26	433			1.0)		20				404		4355	13341	1413000		1.0	1.0	204	270	22	1696	20 33		8 1700	74		0			1.0	1.0	1.
EAST APPR. SUBTOT.	1115 328 67	60 2371 441	435 914	706 13	23 5	10 1.0	3185 3	3385 13	28 1	1445 1197	5 1	4 14	2811	627 4	4565	729951	1468512		1.0	1.0	204	270	22	1696	20 33	78 1678	8 1700	74		6 6		12	1.0	1.0	1.
					I									K.	YIAKF	BRID	GF									<u> </u>									
UNIT	CY SY S	Y CY LF	LF LF	LF EA	EA EA	EA LS	LF	LF EA	L EA	LF LF	EA E	A EA	A CY					LB L	S LS	LS	SY LS	5 LF	EA LS	LF	EA L	F LF	LF	LF	LF	EA EA	EA E	.A EA	LS L:	S LS	L
BRIDGE TOTALS	2230 656 177	07 4854 909	894 2190	1622 30	54 10	20 3.0	6578 6	6970 26	56 6	6434 4601	20 5	51 51	12063	2951 9	9627 180	2710766	3178251	283098 1.	0 2.0	3.0	408 1.0	506	48 1.0	4068	44 73	66 402	3 5455	148	148	12 12	4 :	2 24	3.0 1.0	3.0	 3
																								7			67)							
																	=																		
							_										=																		
PILE TESTIN	G" FOR ADDITION	IAL INFORMATIO	ON REGARDING	G DYNAMIC T	ESTING RE		NTS.		-									ROACHES =																	_
								\bigcirc	\	TED WETOL	1T AF 675) CT!!D	VI CILL	_	CDAN ADOL	BDIUUL	_				17110 1 A	100							A 0111	NTITICO O	DEVICES			_	
								(2)	, CSTIMA	ıcu WElGh	11 UF 5 P	VUCTUK/	al Jite	IVIATIV S	SPAN AKUH	NUINPF =	_				9141044	LD)							VI SUUA.	NTITIES R		EVISION			_
	DYNAMIC PILE T	ESTING - ON L	_AND - RESTRIŁ	.KE {	8 EACH			3																						NOVEM	IBER 15,			CHECKE	ΞD
THE SPLICE	QUANTITIES ARE	DUE TO THE P	POTENTIAL FOR	R PILES BET	NG DRIVEN	N BELOW			-)ACHES =												GNED BY: ILED BY:			CDW		
THE LOWEST	ANTICIPATED PI	LE TIP ELEVAT																												Con	nmon		th of 3		
INSTALL" FO	R ADDITIONAL IN	IFORMATION.						4																						DEP	ARTM	<u>iENT</u>	OF H	IIGHW	J _A
THE ESTIMA ⁻	TED QUANTITIES	FOR PIPE PILE	E INSTALL ITEN	MS IN THE	TABLE ABO	OVE																				7				M	IARS	HAL	L/1	TRIG	C
INCLUDE THE	E CONTINGENCY Q	NUANTITIES BEI	LOW DUE TO TH	HE POTENTI	[AL FOR P]	ILE TIPS)ACHES =						Ī	AK	: 7	Her	FES	RC	UTE 668			CROSSIN	NG	
BELOW THE L	LOWEST ANTICIP <i>a</i> Tall" for addit			EE "SPECIAI	L NOTE FC	OR PIPE		<u>(</u> 5) FSTIMAT	TED LENG	TH OF RRI	DGF HA	NGFR ST	RAND =							5440	ΙF				(I,I)					ΤΙΛΙΔΊ		ENTUCK F QUA		
PILFS - INS		INI OINIVIE	. =					\sim																> 11 gp 50 0	540-1215-12199-0121-17	- Arthroph Colonia and Colonia	es a una cuentra considera.	COO 124 V V V V V CO				REPARED BY		1/ V / / /	
		TALL - 72 IN F	PIPE - 2 IN		400 LF			0) ADDITIC	onal met <i>i</i>	AL RAIL F	UR LAG	OON DKI	JGE -											1 7 '	CIAT LAI	JIVIDEE				1 1				
	PIPE PILES INS							_							ALS FOR FU	TURE MAI	NTENANCE	USE.												aker			EL BAKER JR RMSBY STATI	R., INC. ION ROAD	

									EQUI'	VALENT	STATI	C WIND	LOAD	CASES										
					WI	NDWARD A	ARCH (SOU	TH)									LEEV	WARD ARC	:H (NORTH))				
COMPONENT	RS1	RS2	RS3	RS4	RS5	RS6	RS7	RS8	RS9	RS10	RS11	RS12	RS1	RS2	RS3	RS4	RS5	RS6	RS7	RS8	RS9	RS10	RS11	RS12
Fx (KIP/FT)	-0.0038	-0.0127	-0.0077	-0.0003	0.0002	-0.0007	-0.0018	-0.0028	-0.0025	0.0030	0.0077	0.0050	-0.0063	-0.0162	-0.0094	-0.0002	0.0002	-0.0010	-0.0026	-0.0042	-0.0042	0.0019	0.0081	0.0052
ы Fy (KIP/FT)	0.1275	0.1454	0.1587	0.1672	0.1716	0.1733	0.1734	0.1719	0.1679	0.1607	0.1495	0.1334	0.1277	0.1454	0.1580	0.1674	0.1710	0.1733	0.1735	0.1715	0.1680	0.1603	0.1496	0.1335
Fz (KIP/FT)	-0.0623	-0.0609	-0.0787	-0.1065	-0.1143	-0.1164	-0.1176	-0.1165	-0.1088	-0.0868	-0.0699	-0.0631	0.0685	0.0870	0.0762	0.0497	0.0430	0.0415	0.0397	0.0385	0.0437	0.0626	0.0730	0.0647
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0013	0.0019	0.0031	0.0019	0.0006	0.0006	0.0010	0.0017	0.0022	-0.0017	-0.0069	-0.0036	0.0003	-0.0016	-0.0001	0.0003	-0.0003	-0.0002	0.0002	0.0009	0.0018	-0.0010	-0.0050	-0.0024
Fy (KIP/FT)	0.1409	0.1639	0.1828	0.1983	0.2073	0.2112	0.2123	0.2105	0.2029	0.1868	0.1655	0.1395	0.1409	0.1638	0.1828	0.1983	0.2073	0.2112	0.2123	0.2107	0.2028	0.1871	0.1656	0.1394
Fz (KIP/FT)	-0.0724	-0.0823	-0.0911	-0.0917	-0.0877	-0.0858	-0.0848	-0.0815	-0.0782	-0.0847	-0.0875	-0.0737	0.0741	0.0870	0.0924	0.0984	0.1054	0.1090	0.1098	0.1111	0.1108	0.0963	0.0799	0.0718
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0342	0.0497	0.0558	0.0550	0.0542	0.0532	0.0526	0.0525	0.0530	0.0575	0.0551	0.0373	0.0350	0.0518	0.0570	0.0551	0.0544	0.0537	0.0535	0.0541	0.0552	0.0601	0.0569	0.0374
Fy (KIP/FT)	0.1248	0.1388	0.1481	0.1550	0.1591	0.1609	0.1615	0.1609	0.1578	0.1507	0.1392	0.1230	0.1247	0.1389	0.1483	0.1549	0.1594	0.1611	0.1614	0.1604	0.1580	0.1502	0.1391	0.1232
Fz (KIP/FT)	-0.0765	-0.1024	-0.1168	-0.1170	-0.1158	-0.1106	-0.1035	-0.0964	-0.0879	-0.0666	-0.0598	-0.0695	0.0689	0.0584	0.0571	0.0686	0.0749	0.0830	0.0914	0.0984	0.1042	0.1175	0.1095	0.0791
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0322	0.0337	0.0369	0.0377	0.0371	0.0368	0.0363	0.0354	0.0338	0.0268	0.0230	0.0312	0.0309	0.0271	0.0280	0.0306	0.0318	0.0330	0.0335	0.0330	0.0316	0.0223	0.0177	0.0292
Fy (KIP/FT)	0.1251	0.1467	0.1650	0.1798	0.1881	0.1923	0.1946	0.1947	0.1884	0.1749	0.1564	0.1330	0.1251	0.1467	0.1649	0.1799	0.1881	0.1923	0.1948	0.1952	0.1882	0.1754	0.1565	0.1328
Fz (KIP/FT)	-0.0740	-0.0824	-0.0928	-0.0985	-0.0982	-0.0995	-0.1020	-0.1024	-0.1014	-0.1094	-0.1034	-0.0763	0.0767	0.0975	0.1090	0.1135	0.1162	0.1140	0.1089	0.1042	0.0976	0.0702	0.0578	0.0672
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0331	0.0467	0.0484	0.0452	0.0451	0.0453	0.0457	0.0459	0.0455	0.0430	0.0376	0.0300	0.0348	0.0538	0.0565	0.0509	0.0499	0.0495	0.0499	0.0509	0.0518	0.0529	0.0469	0.0326
БУ (KIP/FT)	0.1289	0.1450	0.1556	0.1624	0.1652	0.1644	0.1616	0.1571	0.1519	0.1426	0.1317	0.1177	0.1288	0.1451	0.1560	0.1622	0.1657	0.1645	0.1614	0.1570	0.1520	0.1426	0.1316	0.1177
Fz (KIP/FT)	-0.0744	-0.0961	-0.1000	-0.0901	-0.0871	-0.0844	-0.0804	-0.0768	-0.0752	-0.0750	-0.0761	-0.0742	0.0667	0.0548	0.0598	0.0827	0.0924	0.1005	0.1081	0.1141	0.1162	0.1165	0.1022	0.0781
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0017	0.0137	0.0066	-0.0046	-0.0056	-0.0050	-0.0045	-0.0048	-0.0074	-0.0198	-0.0235	-0.0068	0.0023	0.0154	0.0083	-0.0036	-0.0047	-0.0043	-0.0037	-0.0037	-0.0058	-0.0166	-0.0201	-0.0054
Fy (KIP/FT)	0.1252	0.1376	0.1458	0.1534	0.1584	0.1618	0.1632	0.1629	0.1614	0.1527	0.1398	0.1218	0.1250	0.1377	0.1465	0.1530	0.1592	0.1621	0.1635	0.1637	0.1611	0.1534	0.1399	0.1215
Fz (KIP/FT)	-0.0765	-0.0994	-0.0900	-0.0616	-0.0581	-0.0610	-0.0638	-0.0680	-0.0787	-0.1095	-0.1105	-0.0793	0.0678	0.0590	0.0782	0.1156	0.1239	0.1247	0.1238	0.1202	0.1081	0.0730	0.0591	0.0687
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0298	0.0331	0.0380	0.0411	0.0415	0.0409	0.0401	0.0392	0.0384	0.0400	0.0404	0.0346	0.0305	0.0326	0.0374	0.0413	0.0418	0.0415	0.0409	0.0399	0.0391	0.0390	0.0389	0.0351
Fy (KIP/FT)	0.1445	0.1675	0.1827	0.1879	0.1844	0.1792	0.1733	0.1658	0.1570	0.1507	0.1456	0.1367	0.1445	0.1676	0.1825	0.1880	0.1842	0.1792	0.1733	0.1657	0.1571	0.1505	0.1457	0.1368
Fz (KIP/FT)	-0.0730	-0.0848	-0.0988	-0.1097	-0.1125	-0.1117	-0.1100	-0.1073	-0.1016	-0.0876	-0.0770	-0.0721	0.0738	0.0845	0.0849	0.0792	0.0771	0.0760	0.0747	0.0727	0.0724	0.0756	0.0777	0.0725
Mx (KIP-FT/FT)																								
∞ Fx (KIP/FT)	0.0432	0.0557	0.0595	0.0584	0.0581	0.0576	0.0573	0.0571	0.0569	0.0593	0.0569	0.0434	0.0416	0.0514	0.0557	0.0567	0.0572	0.0572	0.0573	0.0573	0.0576	0.0601	0.0578	0.0439
Fy (KIP/FT)	0.1270	0.1537	0.1757	0.1910	0.1962	0.1961	0.1938	0.1888	0.1780	0.1637	0.1473	0.1279	0.1269	0.1537	0.1759	0.1909	0.1963	0.1962	0.1937	0.1885	0.1781	0.1633	0.1472	0.1280
Fz (KIP/FT)	-0.0759	-0.0995	-0.1115	-0.1116	-0.1111	-0.1075	-0.1021	-0.0964	-0.0900	-0.0732	-0.0656	-0.0688	0.0712	0.0743	0.0795	0.0868	0.0895	0.0928	0.0964	0.0982	0.0992	0.1047	0.0981	0.0756
Mx (KIP-FT/FT)																								
											4													

NOTES

- 1. ALL WIND LOAD CASES DO NOT CONTAIN ANY SAFETY OR LOAD FACTORS AND ARE TO BE APPLIED IN THE SAME MANNER AS WOULD WIND LOADS CALCULATED BY CODE ANALYTICAL METHODS.
- 2. WIND LOADS CORRESPOND TO A MEAN HOURLY WINDSPEED OF 69.6 MPH AT DECK LEVEL.
- 3. Fx POSITIVE FROM WEST TO EAST Fy POSITIVE FROM SOUTH TO NORTH FZ POSITIVE UP M× POSITIVE COUNTERCLOCKWISE ABOUT X-AXIS LOOKING EAST
- 4. DECK AND GIRDER LOADS ARE APPLIED AT CENTER OF GRAVITY OF DECK, LOCATED AT THE CENTERLINE OF BRIDGE.
- 5. THE GIVEN WIND LOADS ARE FOR THE COMPLETE BRIDGE STRUCTURE ONLY. THE CONTRACTOR SHOULD RETAIN AND UTILIZE A WIND SPECIALIST TO EVALUATE WIND BUFFETING LOADS DURING CONSTRUCTION.

LEGEND

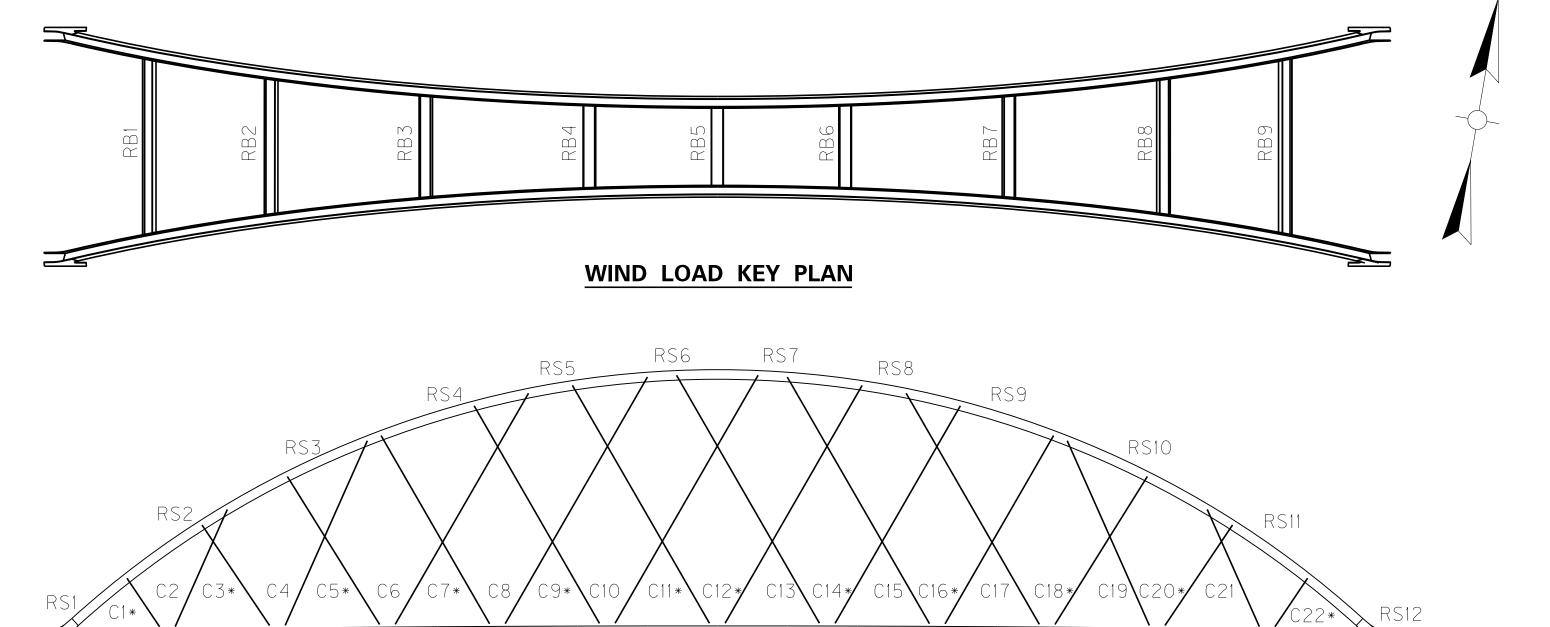
C(n) INDICATES SINGLE HANGER C(n)* INDICATES DOUBLE HANGER DS(n) INDICATES CENTER OF GRAVITY OF DECK RB(n) INDICATES ARCH RIB BRACING MEMBER RS(n) INDICATES ARCH RIB FIELD SPLICE

ITEM NUMBER

01–180.70

Panana ang 141a		TV antuals	
DETAILED BY: MJD	CYY		
DESIGNED BY: CYY	JCS		
DATE: NOVEMBER 15, 2013		CHECKED E	3 Y
REVISION			DATE
<u> </u>			11/25/13

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS


MARSHALL / TRIGG

ROUTE US68 KENTUCKY LAKE WIND LOAD CASES - 1

PREPARED BY

MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

									EQUI'	VALENT	STATI	C WIND	LOAD	CASES										
					WI	NDWARD A	ARCH (SOU	TH)									LEEV	WARD ARC	:H (NORTH))				
COMPONENT	RS1	RS2	RS3	RS4	RS5	RS6	RS7	RS8	RS9	RS10	RS11	RS12	RS1	RS2	RS3	RS4	RS5	RS6	RS7	RS8	RS9	RS10	RS11	RS12
Fx (KIP/FT)	-0.0038	-0.0127	-0.0077	-0.0003	0.0002	-0.0007	-0.0018	-0.0028	-0.0025	0.0030	0.0077	0.0050	-0.0063	-0.0162	-0.0094	-0.0002	0.0002	-0.0010	-0.0026	-0.0042	-0.0042	0.0019	0.0081	0.0052
ы Fy (KIP/FT)	0.1275	0.1454	0.1587	0.1672	0.1716	0.1733	0.1734	0.1719	0.1679	0.1607	0.1495	0.1334	0.1277	0.1454	0.1580	0.1674	0.1710	0.1733	0.1735	0.1715	0.1680	0.1603	0.1496	0.1335
Fz (KIP/FT)	-0.0623	-0.0609	-0.0787	-0.1065	-0.1143	-0.1164	-0.1176	-0.1165	-0.1088	-0.0868	-0.0699	-0.0631	0.0685	0.0870	0.0762	0.0497	0.0430	0.0415	0.0397	0.0385	0.0437	0.0626	0.0730	0.0647
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0013	0.0019	0.0031	0.0019	0.0006	0.0006	0.0010	0.0017	0.0022	-0.0017	-0.0069	-0.0036	0.0003	-0.0016	-0.0001	0.0003	-0.0003	-0.0002	0.0002	0.0009	0.0018	-0.0010	-0.0050	-0.0024
Fy (KIP/FT)	0.1409	0.1639	0.1828	0.1983	0.2073	0.2112	0.2123	0.2105	0.2029	0.1868	0.1655	0.1395	0.1409	0.1638	0.1828	0.1983	0.2073	0.2112	0.2123	0.2107	0.2028	0.1871	0.1656	0.1394
Fz (KIP/FT)	-0.0724	-0.0823	-0.0911	-0.0917	-0.0877	-0.0858	-0.0848	-0.0815	-0.0782	-0.0847	-0.0875	-0.0737	0.0741	0.0870	0.0924	0.0984	0.1054	0.1090	0.1098	0.1111	0.1108	0.0963	0.0799	0.0718
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0342	0.0497	0.0558	0.0550	0.0542	0.0532	0.0526	0.0525	0.0530	0.0575	0.0551	0.0373	0.0350	0.0518	0.0570	0.0551	0.0544	0.0537	0.0535	0.0541	0.0552	0.0601	0.0569	0.0374
Fy (KIP/FT)	0.1248	0.1388	0.1481	0.1550	0.1591	0.1609	0.1615	0.1609	0.1578	0.1507	0.1392	0.1230	0.1247	0.1389	0.1483	0.1549	0.1594	0.1611	0.1614	0.1604	0.1580	0.1502	0.1391	0.1232
Fz (KIP/FT)	-0.0765	-0.1024	-0.1168	-0.1170	-0.1158	-0.1106	-0.1035	-0.0964	-0.0879	-0.0666	-0.0598	-0.0695	0.0689	0.0584	0.0571	0.0686	0.0749	0.0830	0.0914	0.0984	0.1042	0.1175	0.1095	0.0791
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0322	0.0337	0.0369	0.0377	0.0371	0.0368	0.0363	0.0354	0.0338	0.0268	0.0230	0.0312	0.0309	0.0271	0.0280	0.0306	0.0318	0.0330	0.0335	0.0330	0.0316	0.0223	0.0177	0.0292
Fy (KIP/FT)	0.1251	0.1467	0.1650	0.1798	0.1881	0.1923	0.1946	0.1947	0.1884	0.1749	0.1564	0.1330	0.1251	0.1467	0.1649	0.1799	0.1881	0.1923	0.1948	0.1952	0.1882	0.1754	0.1565	0.1328
Fz (KIP/FT)	-0.0740	-0.0824	-0.0928	-0.0985	-0.0982	-0.0995	-0.1020	-0.1024	-0.1014	-0.1094	-0.1034	-0.0763	0.0767	0.0975	0.1090	0.1135	0.1162	0.1140	0.1089	0.1042	0.0976	0.0702	0.0578	0.0672
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0331	0.0467	0.0484	0.0452	0.0451	0.0453	0.0457	0.0459	0.0455	0.0430	0.0376	0.0300	0.0348	0.0538	0.0565	0.0509	0.0499	0.0495	0.0499	0.0509	0.0518	0.0529	0.0469	0.0326
БУ (KIP/FT)	0.1289	0.1450	0.1556	0.1624	0.1652	0.1644	0.1616	0.1571	0.1519	0.1426	0.1317	0.1177	0.1288	0.1451	0.1560	0.1622	0.1657	0.1645	0.1614	0.1570	0.1520	0.1426	0.1316	0.1177
Fz (KIP/FT)	-0.0744	-0.0961	-0.1000	-0.0901	-0.0871	-0.0844	-0.0804	-0.0768	-0.0752	-0.0750	-0.0761	-0.0742	0.0667	0.0548	0.0598	0.0827	0.0924	0.1005	0.1081	0.1141	0.1162	0.1165	0.1022	0.0781
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0017	0.0137	0.0066	-0.0046	-0.0056	-0.0050	-0.0045	-0.0048	-0.0074	-0.0198	-0.0235	-0.0068	0.0023	0.0154	0.0083	-0.0036	-0.0047	-0.0043	-0.0037	-0.0037	-0.0058	-0.0166	-0.0201	-0.0054
Fy (KIP/FT)	0.1252	0.1376	0.1458	0.1534	0.1584	0.1618	0.1632	0.1629	0.1614	0.1527	0.1398	0.1218	0.1250	0.1377	0.1465	0.1530	0.1592	0.1621	0.1635	0.1637	0.1611	0.1534	0.1399	0.1215
Fz (KIP/FT)	-0.0765	-0.0994	-0.0900	-0.0616	-0.0581	-0.0610	-0.0638	-0.0680	-0.0787	-0.1095	-0.1105	-0.0793	0.0678	0.0590	0.0782	0.1156	0.1239	0.1247	0.1238	0.1202	0.1081	0.0730	0.0591	0.0687
Mx (KIP-FT/FT)																								
Fx (KIP/FT)	0.0298	0.0331	0.0380	0.0411	0.0415	0.0409	0.0401	0.0392	0.0384	0.0400	0.0404	0.0346	0.0305	0.0326	0.0374	0.0413	0.0418	0.0415	0.0409	0.0399	0.0391	0.0390	0.0389	0.0351
Fy (KIP/FT)	0.1445	0.1675	0.1827	0.1879	0.1844	0.1792	0.1733	0.1658	0.1570	0.1507	0.1456	0.1367	0.1445	0.1676	0.1825	0.1880	0.1842	0.1792	0.1733	0.1657	0.1571	0.1505	0.1457	0.1368
Fz (KIP/FT)	-0.0730	-0.0848	-0.0988	-0.1097	-0.1125	-0.1117	-0.1100	-0.1073	-0.1016	-0.0876	-0.0770	-0.0721	0.0738	0.0845	0.0849	0.0792	0.0771	0.0760	0.0747	0.0727	0.0724	0.0756	0.0777	0.0725
Mx (KIP-FT/FT)																								
∞ Fx (KIP/FT)	0.0432	0.0557	0.0595	0.0584	0.0581	0.0576	0.0573	0.0571	0.0569	0.0593	0.0569	0.0434	0.0416	0.0514	0.0557	0.0567	0.0572	0.0572	0.0573	0.0573	0.0576	0.0601	0.0578	0.0439
Fy (KIP/FT)	0.1270	0.1537	0.1757	0.1910	0.1962	0.1961	0.1938	0.1888	0.1780	0.1637	0.1473	0.1279	0.1269	0.1537	0.1759	0.1909	0.1963	0.1962	0.1937	0.1885	0.1781	0.1633	0.1472	0.1280
Fz (KIP/FT)	-0.0759	-0.0995	-0.1115	-0.1116	-0.1111	-0.1075	-0.1021	-0.0964	-0.0900	-0.0732	-0.0656	-0.0688	0.0712	0.0743	0.0795	0.0868	0.0895	0.0928	0.0964	0.0982	0.0992	0.1047	0.0981	0.0756
Mx (KIP-FT/FT)																								
											4													

DS5

DS4

WIND LOAD KEY ELEVATION

DS6

DS7

DS8 DS9

NOTES

- 1. ALL WIND LOAD CASES DO NOT CONTAIN ANY SAFETY OR LOAD FACTORS AND ARE TO BE APPLIED IN THE SAME MANNER AS WOULD WIND LOADS CALCULATED BY CODE ANALYTICAL METHODS.
- 2. WIND LOADS CORRESPOND TO A MEAN HOURLY WINDSPEED OF 69.6 MPH AT DECK LEVEL.
- 3. Fx POSITIVE FROM WEST TO EAST
 Fy POSITIVE FROM SOUTH TO NORTH
 Fz POSITIVE UP
 Mx POSITIVE COUNTERCLOCKWISE ABOUT X-AXIS LOOKING EAST
- 4. DECK AND GIRDER LOADS ARE APPLIED AT CENTER OF GRAVITY OF DECK, LOCATED AT THE CENTERLINE OF BRIDGE.
- 1 (5. THE GIVEN WIND LOADS ARE FOR THE COMPLETE BRIDGE STRUCTURE ONLY. THE CONTRACTOR SHOULD RETAIN AND UTILIZ A WIND SPECIALIST TO EVALUATE WIND BUFFETING LOADS DURING CONSTRUCTION.

LEGEND

C(n) INDICATES SINGLE HANGER

C(n)* INDICATES DOUBLE HANGER

DS(n) INDICATES CENTER OF GRAVITY OF DECK

RB(n) INDICATES ARCH RIB BRACING MEMBER

RS(n) INDICATES ARCH RIB FIELD SPLICE

Over Kentucky Lake & Lake Barkley

ITEM NUMBER

01–180.70

<u> </u>			11/25/13
REVISION			DATE
DATE: NOVEMBER 15, 2013		CHECKED E	3 Y
DESIGNED BY: CYY	JCS		
DETAILED BY: MJD	CYY		

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG

ROUTE CROSSING KENTUCKY LAKE

WIND LOAD CASES - 1

Baker MICH 9750 C SUITI

MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

INC.
N ROAD

DRAWING NO.

24686

DSO DS1

DS2

DS3

PLANS:	$\Lambda \mid C \cap \mid / \Lambda \mid \cap \mid \Lambda \mid \Lambda \mid C$			ר ור	
AKA ALT.	ALSO KNOWN AS ALTERNATE	FLG FT	FLANGE	PJP PL	PARTIAL JOINT PENETR
			FEET		PLATE
APPROX.	APPROXIMATE	FTG	FOOTING	PLCS.	PLACES
ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS	FWS	FUTURE WEARING SURFACE	PMCJ	PERMISSIBLE CONSTRUC JOINT
		GALV.	GALVANIZED	DD	
3.F.	BACK FACE	GDR.	GIRDER	PP	PIPE PILE
3.0.F.	BOTTOM OF FOOTING	GR / GR.	GRADE	PRE - FAB	PRE FABRICATION
BOR / BOTT	BEGINNING OF RESTRIKE	Н.	HEAVY	PVC	POLYVINYL CHLORIDE
BOT / BOTT. BR		H.S.	HIGH STRENGTH	R / F	REAR FACE
BRG.	BRAKING	HORIZ.	HORIZONTAL	R.	RADIUS
BTW. / BTWN.	BEARING	HPS	HIGH PERFORMANCE STEEL	R.C.J	ROUGHENED CONSTRUCT JOINT
olw. / blwiv. C.F.S.		HSB	HIGH STRENGTH BOLT	DETN	
	CUBIC FEET PER SECOND	HVY	HEAVY	REIN.	REINFORCEMENT
	CENTERLINE	I U	IMPACT	REQ'D	REQUIRED
C.Y.	COMPOSITE DEAD LOAD	I.D.	INNER DIAMETER	ROT.	ROTATION
CDL	COMPOSITE DEAD LOAD	INT.	INTEGRAL	RT.	RIGHT
CJP	COMPLETE JOINT PENETRATION	INT.	INTERIOR	S.A.S.	SPACED AS SHOWN
CLR.	CLEAR	ISO.	ISOLATION	S.Y.	SQUARE YARDS
COMP	COMPINATION	JACK.	JACKING	S/W	SPACE WITH
COMB.	COMBINATION	JT.	JOINT	SE	SOUTHEAST
CONC.	CONCRETE	KIPS	KILOPOUNDS	SER.	SERIES
CONN.	CONNECTION	KSI	KIPS PER SQUARE INCH	SERV.	SERVICE
CONST.	CONSTRUCTION	L	ANGLE	SH	SHRINKAGE
CONT.	CONTINUOUS	L.F.	LINEAR FEET	SHLDR.	SHOULDER
CTR.	CENTER	L.S.	LUMP SUM	SHT.	SHEET
CVN	CHARPY - V - NOTCH	LBS.	POUNDS	SPA.	SPACES
D _B	BAR DIAMETER	LG.	LONG	SPECS.	SPECIFICATIONS
D C	DEAD LOAD OF STRUCTURAL	LL	LIVE LOAD	SQ.	SQUARE
DEFL.	DEFLECTION	LLB	LOWER LATERAL BRACING	SS / S.S.	STAINLESS STEEL
DEG.	DEGREE	LMC	LATEX MODIFIED CONCRETE	STA.	STATION
OIA.	DIAMETER	LONG / LONGIT.	LONGITUDINAL	STD.	STANDARD
DIAPH.	DIAPHRAGM			STIFF.	STIFFENER
DIM.	DIMENSION	LT.	LEFT	STR.	STRENGTH
OP.	DEEP	MAX.	MAXIMUM	STR.	STRAIGHT
DTLS	DETAILS	MEAS.	MEASURED	SW	SOUTHWEST
) W	DEAD LOAD OF WEARING	MECH.	MECHANICAL NOMINAL PIPE SIZE	T&B	TOP AND BOTTOM
<i></i>	SURFACES AND UTILITIES	MID.	MIDDLE	T.O.F.	TOP OF FOOTING
OWG.	DRAWING	MIN.	MINIMUM	TRANS.	TRANSVERSE
E / EXP.	EXPANSION	MPH	MILES PER HOUR	TU	TEMPERATURE
	EAST	MTG	MOUNTING	TYP.	TYPICAL
<u> </u>	EACH FACE	N	NORTH	U.N.O.	UNLESS NOTED OTHERWI
_ A .	EACH	N.S.	NEAR SIDE	UHMW	ULTRA HIGH MOLECTULA WEIGHT POLYETHYLENE
EΒ	EAST BOUND	N. T. S.	NOT TO SCALE	\	
EB. / E.B.	END BENT	NAV.	NAVIGATIONAL	V . C .	vertical curve
EE	EXTREME EVENT	NE	NORTHEAST	V.P.I.	VERTICAL POINT OF Intersection
EFB	END FLOORBEAM	NEG.	NEGATIVE	VEDT	
ELEV. / EL	ELEVATION	NF	NORTH FACE	VERT.	VERTICAL
EMBED.	EMBEDMENT	NO.	NUMBER	W .	WEST
EOD	END OF DRIVING	NPS	NOMINAL PIPE SIZE	W. C. D.	WEST
- Q .	EQUAL OR EARTHQUAKE	NW	NORTHWEST	W.S.P.	WELDED STEEL PLATE
EST.	ESTIMATED	0.D.	OUTER DIAMETER	W/	WITH
EXIST./EX.	EXISTING	OPP.	OPPOSITE	WB	WEST BOUND
EXT.	EXTERIOR	P.C.	POINT OF CURVATURE	WP / W.P.	WORK POINT
=	FIXED	P.G.	PROFILE GRADE	WS	WIND ON STRUCTURE
- F.	FRONT FACE	P.I.	POINT OF INTERSECTION	YD.	YARDS
=.S.	FRONT SIDE	P.T.	POINT OF TANGENT		
FA.	FACE	PC	PIECES		
=B	FLOORBEAM	PERM.	PERMISSIBLE		
- CM	FRACTURE CRTICAL MATERIAL	PERP.	PERPENDICULAR		
	EDONIT ENCE	PG	PAGE		

PG

PGL

FF

FIX.

FRONT FACE

FIXED

PAGE

PROFILE GRADE LINE

EST	IMA-	TE OF STRL	JCTURAL ST	EEL	
		FOR INFORMAT	ION ONLY		
ITEM	UNIT	FCM-50W	FCM-70W HPS	NON-FCM-50W	NON-FCM-70W HPS
APPROACH GIRDERS	LB			19,615,919	
KNUCKLE	LB		148,680	43,404	12,180
ARCH RIB AND CONNECTIONS	LB				1,139,527
ARCH RIB BRACING AND CONNECTIONS	LB			327, 352	
TIE GIRDER AND CONNECTIONS	LB		1,287,903	59,621	61, 557
HANGER ANCHORAGE	LB	20, 451	77,402	5,771	
FLOORBEAMS AND CONNECTIONS	LB	16,989	672,269	5,615	
STRINGERS AND CONNECTIONS	LB			689,227	
LOWER LATERAL BRACING AND CONNECTIONS	LB			145,079	
UTILITY HANGERS AND CONNECTIONS	LB			9,113	
INSPECTION AND NAVIGATIONAL LIGHTING ACCESS	LB			18,904	

ESTIMATE OF MECHANICAL REINFORCEMENT COUPLERS														
	FOR I	NFORMA	ATION C	NLY										
ITEM	PIER 1	PIER 2	PIER 3	PIER 4	PIER 5	PIER 6	PIER 7	PIER 8	PIER 9					
MECHANICAL REINFORCEMENT COUPLERS #7				26	26									
MECHANICAL REINFORCEMENT COUPLERS #11			96	324	324	192								
MECHANICAL REINFORCEMENT COUPLERS #14				272	272									
MECHANICAL REINFORCEMENT COUPLERS #18	32	32	32	184	184	100	32	32	32					

MECHANICAL COUPLERS WILL NOT BE PAID SEPARATELY AND ARE INCIDENTAL TO THE PRICE OF THE STEEL REINFORCEMENT

	DETAILED E	BY: CEW	ACK
			of Kentucky OF HIGHWAYS
	ľ	MARSHALL	
AKERBRIDGES	ROUTE	1/20	CROSSING

A QUANTITIES REVISED

DESIGNED BY: ACK

DATE: NOVEMBER 15, 2013

US68 KENTUCKY LAKE

Over Kentucky Lake & Lake Barkley

ABBREVIATIONS

ABBREVIATIONS
PREPARED BY

RMS

Baker

ITEM NUMBER

01–180.70

MICHAEL BAKER JR., INC.
9750 ORMSBY STATION ROAD
SUITE 210
LOUISVILLE, KY 40223

REVISION

SHEET NO. S010 DRAWING NO. 24686

11/25/13

DATE

		NG ABBREVIATIONS MAY HAVE N THE PREPARATION OF THESE				
	PLANS: AKA	ALSO KNOWN AS	FLG	FLANGE	PJP	PARTIAL JOINT PENETRATION
	ALT.	ALTERNATE	FT	FEET	PL	PLATE
	APPROX.	APPROXIMATE	FTG	FOOTING	PLCS.	PLACES
	ASTM	AMERICAN SOCIETY FOR TESTING	FWS	FUTURE WEARING SURFACE	PMCJ	PERMISSIBLE CONSTRUCTION
		AND MATERIALS	GALV.	GALVANIZED		JOINT
	B.F.	BACK FACE	GDR.	GIRDER	PP	PIPE PILE
	B. O. F.	BOTTOM OF FOOTING	GR / GR.	GRADE	PRE - FAB	PRE FABRICATION
	BOR	BEGINNING OF RESTRIKE	Н.	HEAVY	PVC	POLYVINYL CHLORIDE
	BOT / BOTT. BR		H.S.	HIGH STRENGTH	R / F	REAR FACE
	BRG.	BRAKING BEARING	HORIZ. HPS	HORIZONTAL HIGH PERFORMANCE STEEL	R.	RADIUS
DGN	BTW. / BTWN		HSB	HIGH STRENGTH BOLT	R.C.J	ROUGHENED CONSTRUCTION JOINT
INDO2.DGN	C.F.S.	CUBIC FEET PER SECOND	HVY	HEAVY	REIN.	REINFORCEMENT
	C.L.	CENTERLINE	T	IMPACT	REQ'D	REQUIRED
32\S24686	C.Y.	CUBIC YARDS	I.D.	INNER DIAMETER	ROT.	ROTATION
2\52	CDL	COMPOSITE DEAD LOAD	INT.	INTEGRAL	RT.	RIGHT
41582	CJP	COMPLETE JOINT PENETRATION	INT.	INTERIOR	S.A.S.	SPACED AS SHOWN
/D01	CLR.	CLEAR	ISO.	ISOLATION	S. Y.	SQUARE YARDS
NO L	CO.	COUNTY	JACK.	JACKING	S/W	SPACE WITH
NIH.	COMB.	COMBINATION	JT.	JOINT	SE	SOUTHEAST
C W E T	CONC.	CONCRETE	KIPS	KILOPOUNDS	SER.	SERIES
15/(CONN.	CONNECTION	KSI	KIPS PER SQUARE INCH	SERV.	SERVICE
OJEC	CONST.	CONSTRUCTION	L	ANGLE	SH	SHRINKAGE
Z_PR(CONT.	CONTINUOUS	L.F.	LINEAR FEET	SHLDR.	SHOULDER
AKEA	CTR.	CENTER	L.S.	LUMP SUM	SHT.	SHEET
7L \B	CVN	CHARPY - V - NOTCH	LBS.	POUNDS	SPA.	SPACES
LOCA	DB	BAR DIAMETER	LG.	LONG	SPECS.	SPECIFICATIONS
C:\PWV8I-LOCAL\BAKER_PROJECTS\CWETHINGTON\DO14158	DC	DEAD LOAD OF STRUCTURAL	LL	LIVE LOAD	SQ.	SQUARE
M _ /	DEFL.	DEFLECTION	LLB	LOWER LATERAL BRACING	SS / S.S.	STAINLESS STEEL
	DEG.	DEGREE	LMC	LATEX MODIFIED CONCRETE	STA.	STATION
NAME	DIA.	DIAMETER	LONG /	LONGITUDINAL	STD.	STANDARD
FILE	DIAPH.	DIAPHRAGM	LONGIT.		STIFF.	STIFFENER
	DIM.	DIMENSION	LT.	LEFT	STR.	STRENGTH
	DP.	DEEP	MAX.	MAXIMUM MEASURED	STR. SW	STRAIGHT SOUTHWEST
	DTLS	DETAILS	MEAS. MECH.	MECHANICAL NOMINAL PIPE SIZE	T&B	TOP AND BOTTOM
$\overline{\Sigma}$	DW	DEAD LOAD OF WEARING SURFACES AND UTILITIES	MID.	MIDDLE	T. O. F.	TOP OF FOOTING
2013	DWC		MIN.	MINIMUM	TRANS.	TRANSVERSE
7 21,	DWG. E / EXP.	DRAWING EXPANSION	MPH	MILES PER HOUR	TU	TEMPERATURE
embe	E.	EAST	MTG	MOUNTING	TYP.	TYPICAL
Hon Nove	E.F.	EACH FACE	N	NORTH	U.N.O.	UNLESS NOTED OTHERWISE
hing ED:	EA.	EACH	N.S.	NEAR SIDE	1 11 18 4147	ULTRA HIGH MOLECTULAR
.We+	EB	EAST BOUND	N.T.S.	NOT TO SCALE	UHMW	WEIGHT POLYETHYLENE
USER: CWethington DATE PLOTTED: November	EB. / E.B.	END BENT	NAV.	NAVIGATIONAL	\bigvee , \bigcap ,	VERTICAL CURVE
USE	EE	EXTREME EVENT	NE	NORTHEAST	V.P.I.	VERTICAL POINT OF
	EFB	END FLOORBEAM	NEG.	NEGATIVE	V 0 I 0 I 0	INTERSECTION
	ELEV. / EL	ELEVATION	NF	NORTH FACE	VERT.	VERTICAL
010	EMBED.	EMBEDMENT	NO.	NUMBER	W .	WEST
\$24686	EOD	END OF DRIVING	NPS	NOMINAL PIPE SIZE	W .	WEST
S	EQ.	EQUAL OR EARTHQUAKE	NW	NORTHWEST	W.S.P.	WELDED STEEL PLATE
NAME:	EST.	ESTIMATED	0.D.	OUTER DIAMETER	W/	WITH
	EXIST./EX.	EXISTING	OPP.	OPPOSITE	WB / W B	WEST BOUND
E-SHEET	EXT.	EXTERIOR	P. C.	POINT OF CURVATURE	WP / W.P.	WORK POINT
ш		FIXED	P.G.	PROFILE GRADE	WS YD.	WIND ON STRUCTURE
9, 459	F.F.	FRONT FACE	P.I. P.T.	POINT OF INTERSECTION POINT OF TANGENT	I U .	YARDS
6	F.S. FA.	FACE	PC	PIECES		
×8,11.	FA. FB	FLOORBEAM	PERM.	PERMISSIBLE		
+ion	F C M	FRACTURE CRTICAL MATERIAL	PERP.	PERPENDICULAR		
oS+a+ion	FF	FRONT FACE	PG	PAGE		
070	ΓΙ∨	FIVEN	PGI	PROFILE GRADE LINE		

PROFILE GRADE LINE

FIXED

FIX.

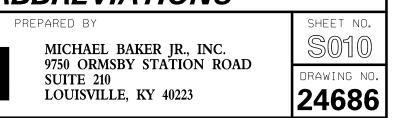
EST	IMAT	TE OF STRU	JCTURAL ST	EEL	
		FOR INFORMAT	ION ONLY		
ITEM	UNIT	FCM-50W	FCM-70W HPS	NON-FCM-50W	NON-FCM-70W HPS
APPROACH GIRDERS	LB			19, 615, 919	
KNUCKLE	LB		148,680	43,404	12,180
ARCH RIB AND CONNECTIONS	LB				1,139,527
ARCH RIB BRACING AND CONNECTIONS	LB			327, 352	
TIE GIRDER AND CONNECTIONS	LB		1,287,903	59,621	61,557
HANGER ANCHORAGE	LB	20,451	77,402	5,771	
FLOORBEAMS AND CONNECTIONS	LB	16,989	672,269	5,615	
STRINGERS AND CONNECTIONS	LB			689,227	
LOWER LATERAL BRACING AND CONNECTIONS	LB			145,079	
UTILITY HANGERS AND CONNECTIONS	LB			9,113	
INSPECTION AND NAVIGATIONAL LIGHTING ACCESS	LB			18,904	

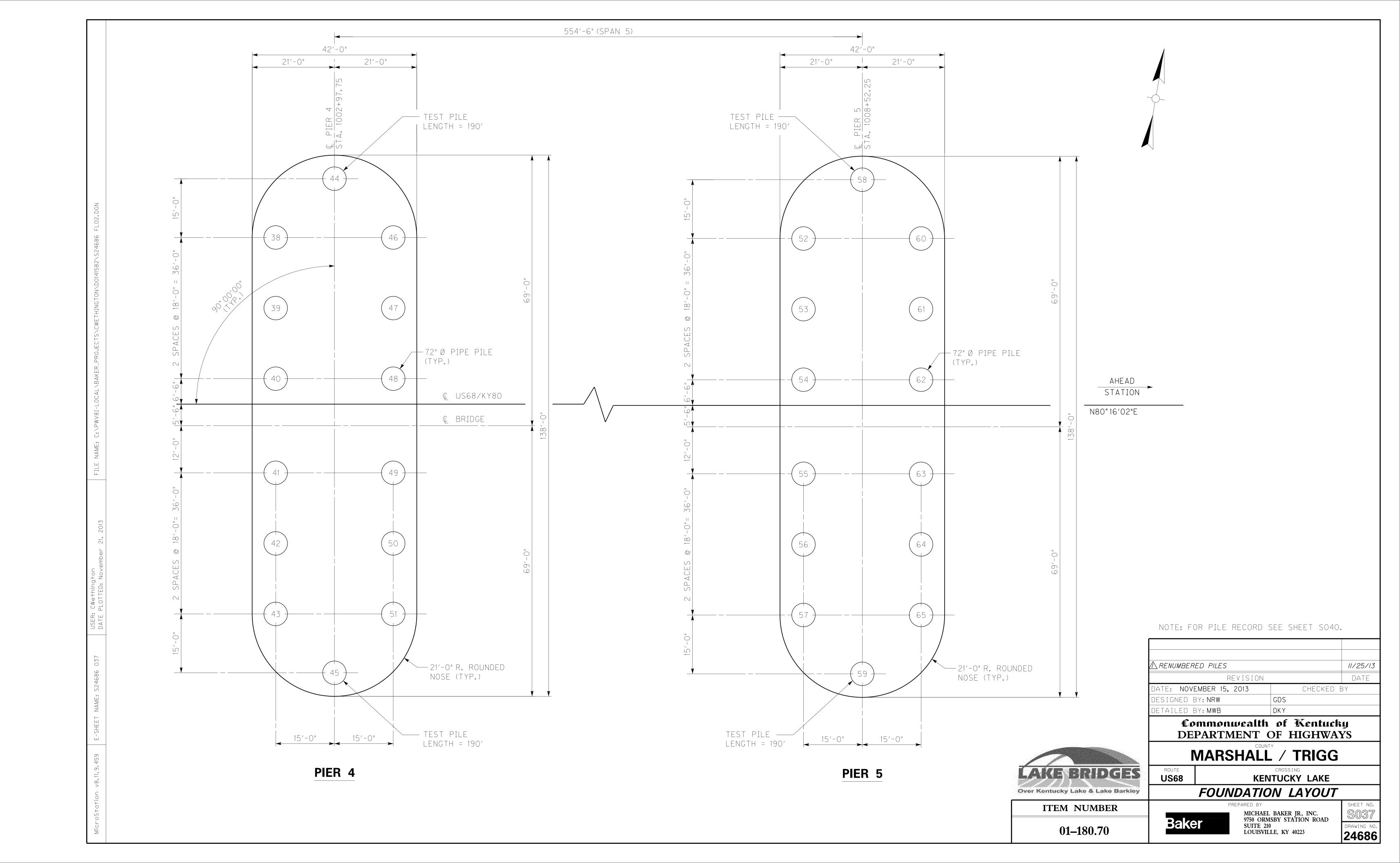
ESTIMATE OF MECHANICAL REINFORCEMENT COUPLERS														
	FOR II	NFORM <i>A</i>	ATION C	NLY										
ITEM	PIER 1	PIER 2	PIER 3	PIER 4	PIER 5	PIER 6	PIER 7	PIER 8	PIER 9					
MECHANICAL REINFORCEMENT COUPLERS #7				26	26									
MECHANICAL REINFORCEMENT COUPLERS #11			96	324	324	192								
MECHANICAL REINFORCEMENT COUPLERS #14				272	272									
MECHANICAL REINFORCEMENT COUPLERS #18	32	32	32	184	184	100	32	32	32					

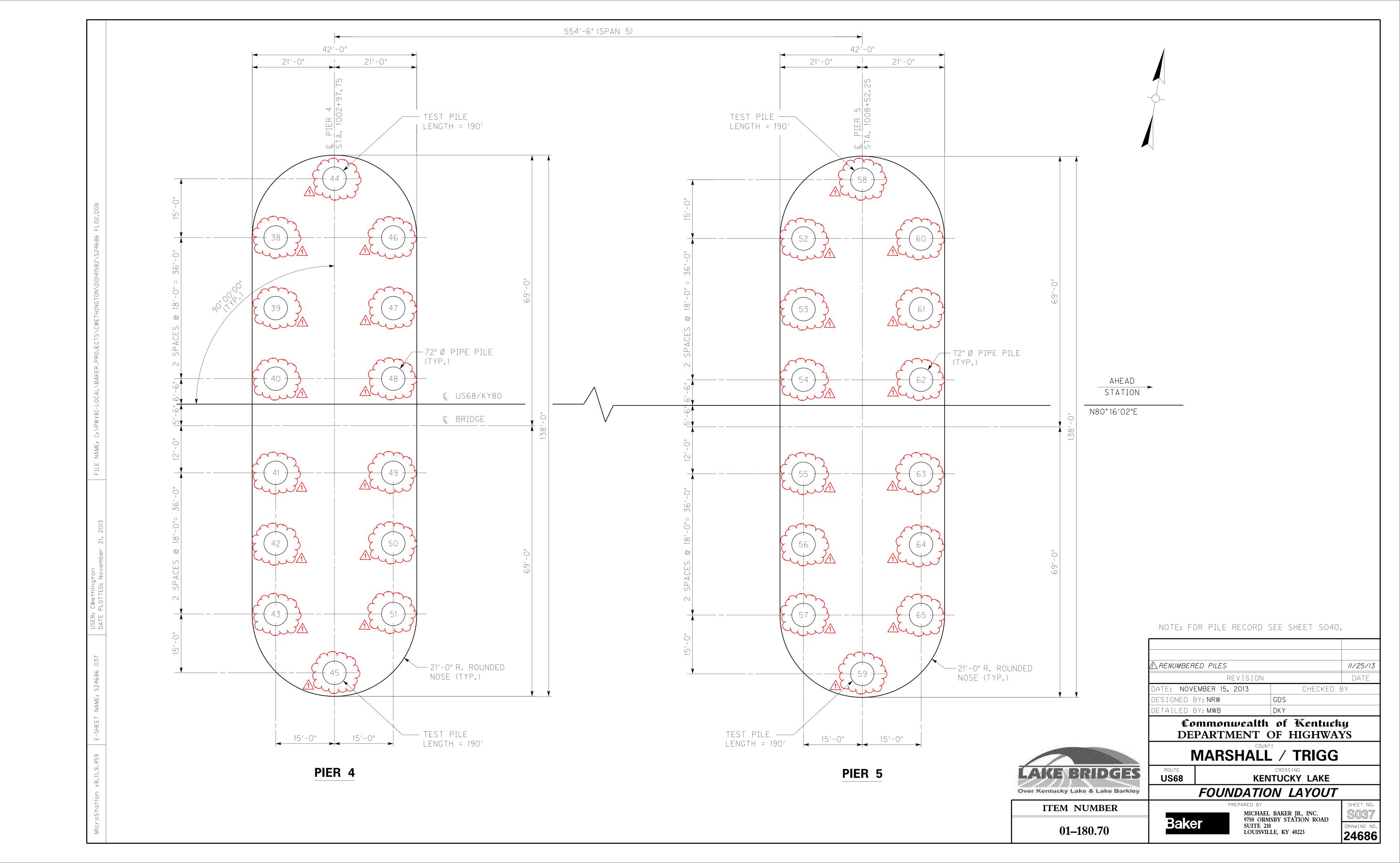
MECHANICAL COUPLERS WILL NOT BE PAID SEPARATELY AND ARE INCIDENTAL TO THE PRICE OF THE STEEL REINFORCEMENT

ESIGNED BY: ACK RMS		11/25
REVISION		DA
DATE: NOVEMBER 15, 2013	CHECKED (3 Y
DESIGNED BY: ACK	RMS	
DETAILED BY: CEW	ACK	

MARSHALL / TRIGG


ROUTE **US68** CROSSING
KENTUCKY LAKE **ABBREVIATIONS**


ITEM NUMBER


Over Kentucky Lake & Lake Barkley

01–180.70

PILE RECORD FOR FRICTION PILES WITH DYNAMIC TESTING

														DATA (OBTAINED	FROM	DYNAMI	C PILE	TESTING * *					
PILE NO.	PILE TYPE AND GRADE	PROJECT HAMMER NUMBER	PILE CUT-OFF ELEVATION	PILE LENGTH IN PLACE	PILE TIP ELEVATION AS DRIVEN	MEASURED MUDLINE ELEVATION	LINE PILE TIP ALLOWABLE ANTIC TION ELEVATION PILE TIP PIL		PILE TIP ELEVATION PILE TIP ELEVATION ELEVATION ELEVATION PILE TIP ELEVATION ELEVATION REGISTANCE (B		RESIS [®]	IINAL PILE FANCE ED ON	ESTIMATED PILE TIP ELEVATION (BASED ON		REQUIRED OF DRIVI				AT BEGINNIN RIKE (BOR)		CTUAL T EOD	ACTUAL AT BOR (FINAL)	TIME AFTER EOD	
										RESISTA	ANCE	DYN	AMIC TING)	DYNAMIC TESTING)	BL(HAM ENE	IMER RGY E	BLOW COUNT N	HAMMEF ENERGY E	BLOW COUNT N	HAMMER ENERGY E	BLOW HAMMER COUNT ENERGY	
													n		BLOWS F	PER INCH	KIP-	-FEET	BLOWS PER INCH	KIP-FEET			DI OME	
			FEET	FEET	FEET	FEET	FEET	FEET	FEET	KIPS	TONS	KIPS	TONS	FEET	MIN.	MAX.	MIN.	MAX.	MIN. MAX.	MIN. M	AX. PER INC	CH KIP-FEET	BLOWS PER INCH KIP-FEET	HOURS
					.				•				PIER	4				•		!		'	1 1	
38			362.0				204.0	210.0	192.0	5500	2750													
39			362.0				204.0	210.0	192.0	5500	2750													
40			362.0				204.0	210.0	192.0	5500	2750													
41			362.0				204.0	210.0	192.0		2750													
42			362.0				204.0	210.0	192.0	 	2750													
43	PP 72×2.0		362.0				204.0	210.0	192.0		2750													
44	ASTM 572		362.0				204.0	210.0	192.0		2750													
45	PP 72×2.0 ASTM 572 GRADE 50 (Fy = 50 KSI)		362.0				204.0	210.0	192.0		2750													
46			362.0				204.0	210.0	192.0		2750													
47			362.0				204.0	210.0	192.0		2750													
48			362.0				204.0	210.0	192.0	+	2750													
49			362.0				204.0	210.0	192.0	 	2750													
50			362.0				204.0	210.0	192.0	 	2750													
51			362.0				204.0	210.0	192.0	5500	2750													
				T	<u></u>	1	Γ	T	T	I I			PIER	5	1			1	т г	T T				
52			362.0				204.0	210.0	192.0		2750													
53			362.0				204.0	210.0	192.0	l -	2750													
54			362.0				204.0	210.0	192.0		2750													
55			362.0		_		204.0	210.0	192.0	 	2750													
56			362.0		_		204.0	210.0	192.0	ł	2750													
1 C	PP_72×2.0		362.0				204.0	210.0	192.0	 	2750													
58	PP 72×2.0 ASTM 572 GRADE 50 (Fy = 50 KSI)		362.0				204.0	210.0	192.0	 	2750													
59	(Fy = 50 KSI)		362.0		1		204.0	210.0	192.0		2750													
60			362.0		1		204.0	210.0	192.0		2750													
61			362.0		-		204.0	210.0	192.0		2750													
62			362.0				204.0	210.0	192.0	+	2750													
63			362.0				204.0	210.0	192.0	 	2750													
64			362.0		-		204.0	210.0	192.0	 	2750				1									
65			362.0				204.0	210.0	192.0	5500	2750													

NOTES: 1. FOR ADDITIONAL INFORMATION REGARDING PILE ELEVATIONS AND DRIVING CRITERIA, SEE "SPECIAL NOTE FOR STEEL PIPE PILES - INSTALL."

** AFTER EVALUATING THE RESULTS OF DYNAMIC PILE TESTING, THE GEOTECHNICAL BRANCH WILL PROVIDE THE DATA TO FILL IN THESE COLUMNS.

Over Kentucky Lake & Lake Barkley

ITEM NUMBER

01–180.70

ARENUMBERED PILES

DESIGNED BY: NRW

DATE: NOVEMBER 15, 2013

REVISION

KENTUCKY LAKE PIER 4 & 5 PILE RECORD

PREPARED BY

MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

24686

11/25/13

DATE

PILE RECORD FOR FRICTION PILES WITH DYNAMIC TESTING

													DATA	OBTAINE	D FROM	DYNAMIC PILE	TESTING:	* *						
PILE NO.	PILE TYPE AND GRADE	PROJECT HAMMER NUMBER	PILE CUT-OFF ELEVATION	PILE LENGTH IN PLACE	PILE TIP ELEVATION AS DRIVEN	MEASURED MUDLINE ELEVATION	ESTIMATED PILE TIP ELEVATION	ALLOWABLE	LOWEST ANTICIPATED PILE TIP ELEVATION	AX	INAL IAL	NOMINAL TEST PILE RESISTANCE (BASED ON	ESTIMATED PILE TIP ELEVATION (BASED ON		REQUIRED OF DRIVI				AT BEGIN			TUAL EOD	ACTUAL AT BOR (FINAL)	
										RESIST	IANCE	DYNAMIC TESTING)	DYNAMIC TESTING)	CC	LOW DUNT N	HAMMER ENERGY E	CO	OW UNT N		MER ERGY E	BLOW COUNT N	HAMMER ENERGY E	BLOW HAMMER COUNT ENERGY N E	R
												R _n		BLOWS	PER INCH	KIP-FEET	BLOWS	PER INCH	KIP.	-FEET				
			FEET	FEET	FEET	FEET	FEET	FEET	FEET	KIPS	TONS	KIPS TONS	FEET	MIN.	MAX.	MIN. MAX.	MIN.	MAX.	MIN.	MAX.	BLOWS PER INCH	KIP-FEET P	BLOWS ER INCH KIP-FEET	
~~~	$\mathcal{I}$			•	1				1	·	ļ	PIE	R 4	l		1			·		1	<b>.</b>	1	
38	7		362.0				204.0	210.0	192.0	5500	2750													
39	3		362.0				204.0	210.0	192.0	5500	2750													
40	}		362.0				204.0	210.0	192.0	5500	2750													
41			362.0				204.0	210.0	192.0	5500	2750													
42	}		362.0				204.0	210.0	192.0	5500	2750													
43	PP 72×2 0		362.0				204.0	210.0	192.0	5500	2750													
44	PP 72×2.0 ASTM 572 GRADE 50 XFy = 50 KSI)		362.0				204.0	210.0	192.0	5500	2750													
45	XFy = 50 KSI)		362.0				204.0	210.0	192.0	5500	2750													
46	}		362.0				204.0	210.0	192.0	5500	2750													
47	3		362.0				204.0	210.0	192.0	5500	2750													
48	}		362.0				204.0	210.0	192.0	5500	2750													
49	3		362.0				204.0	210.0	192.0	5500	2750													
50			362.0				204.0	210.0	192.0	5500	2750													
51	3		362.0				204.0	210.0	192.0	5500	2750													
		<del> </del>		_	T	T	Ţ	_	Ţ		Г	PIE	R 5	_	1 1	T.		т			<del> </del>			
52	🕽		362.0				204.0	210.0	192.0	5500	2750													
53			362.0				204.0	210.0	192.0	5500	2750													
54	1		362.0				204.0	210.0	192.0	5500	2750													
55	}		362.0				204.0	210.0	192.0	5500	2750													
56	1		362.0	1			204.0	210.0	192.0	5500	2750													
57	72×2.0		362.0				204.0	210.0	192.0	5500	2750													
58	PP 72×2.0 ASTM 572 GRADE 50 Fy = 50 KSI)		362.0				204.0	210.0	192.0	5500	2750													
59	<b>4</b> Fy = 50 KSI)		362.0				204.0	210.0	192.0	5500	2750													
60	1 2		362.0				204.0	210.0	192.0	5500	2750													
61	}		362.0				204.0	210.0	192.0	5500	2750													
62	1 2		362.0	1			204.0	210.0	192.0	5500	2750													
63			362.0	1			204.0	210.0	192.0	5500	2750													
64	1 2		362.0				204.0	210.0	192.0	5500	2750													
65			362.0				204.0	210.0	192.0	5500	2750													

NOTES: 1. FOR ADDITIONAL INFORMATION REGARDING PILE ELEVATIONS AND DRIVING CRITERIA, SEE "SPECIAL NOTE FOR STEEL PIPE PILES - INSTALL."

** AFTER EVALUATING THE RESULTS OF DYNAMIC PILE TESTING, THE GEOTECHNICAL BRANCH WILL PROVIDE THE DATA TO FILL IN THESE COLUMNS.



ITEM NUMBER

01–180.70

MARSHALL / TRIGG

ROUTE US68 KENTUCKY LAKE

REVISION

PIER 4 & 5 PILE RECORD

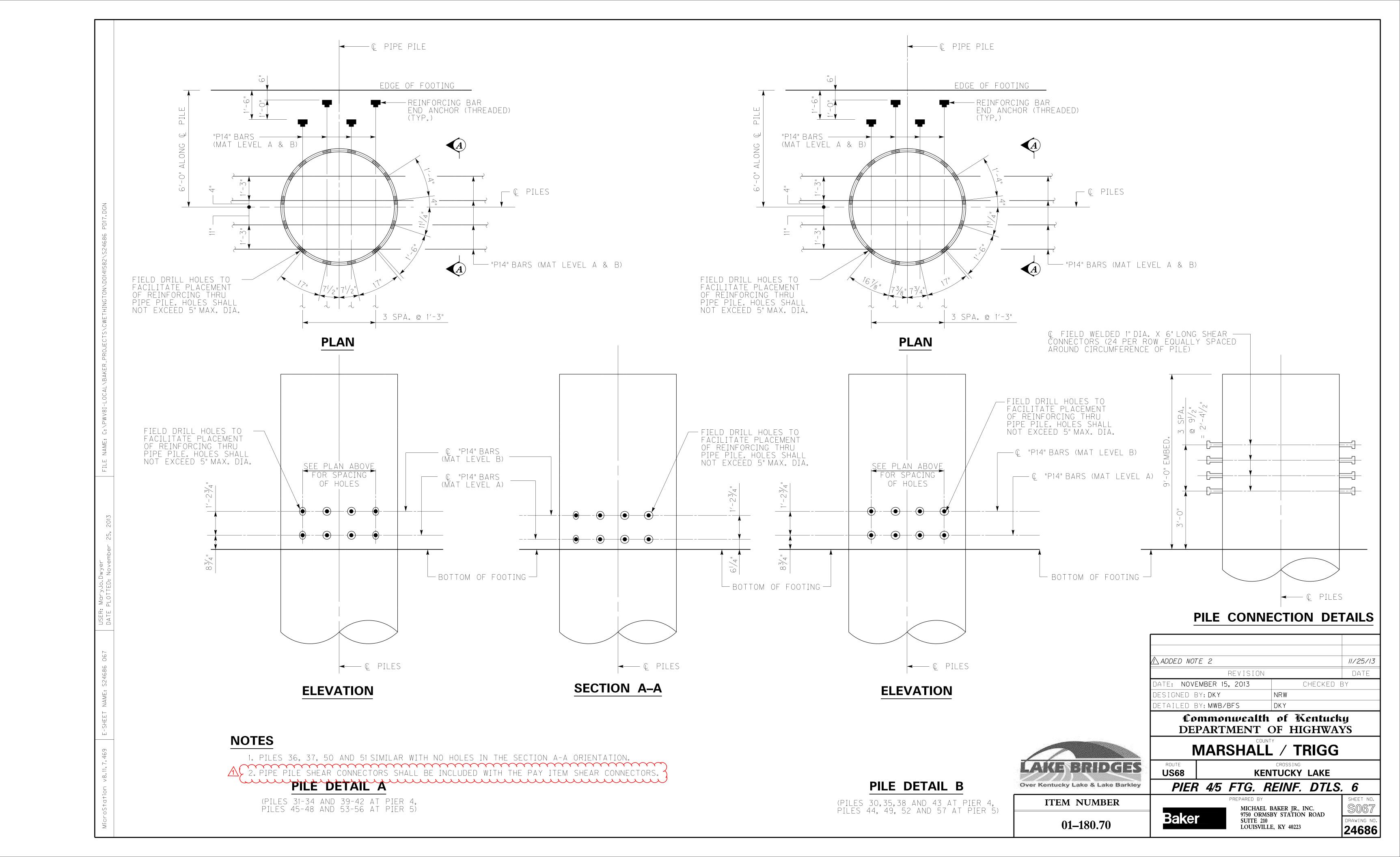
Commonwealth of Kentucky

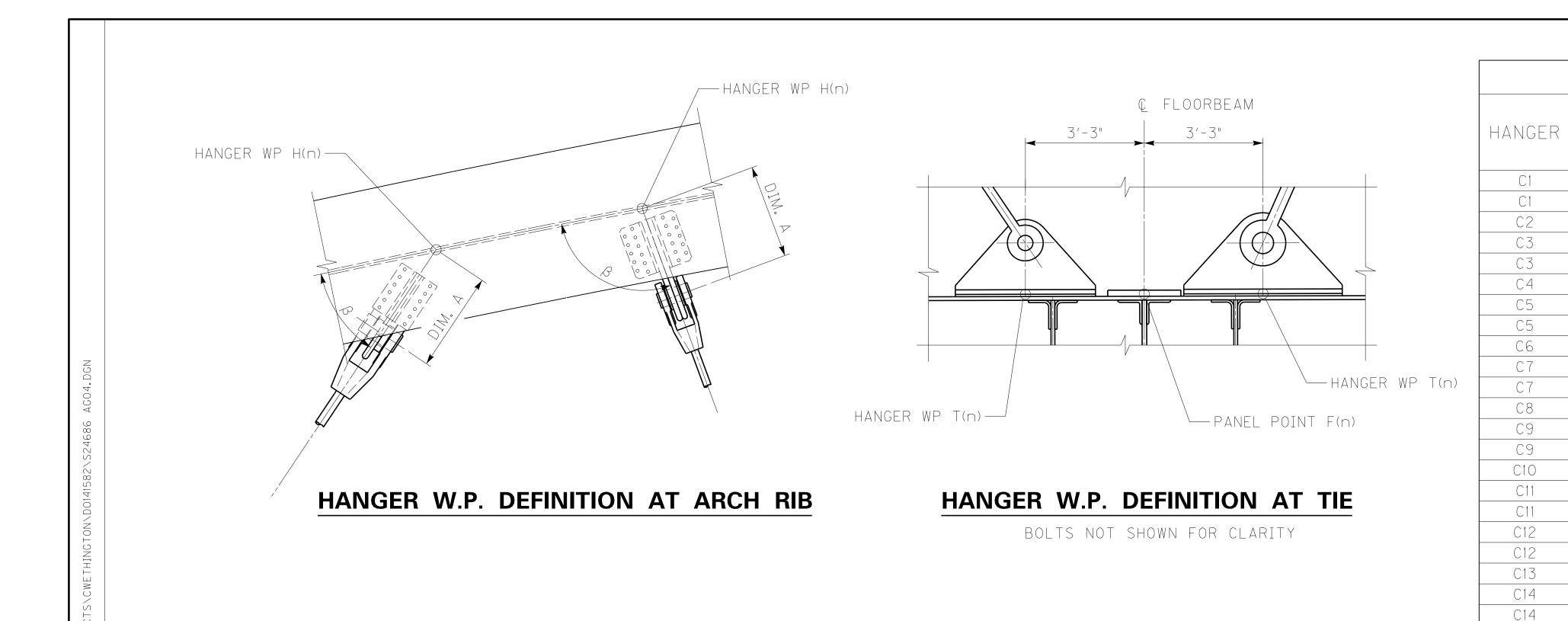
DEPARTMENT OF HIGHWAYS

ARENUMBERED PILES

DESIGNED BY: NRW DETAILED BY: MWB

DATE: NOVEMBER 15, 2013


PREPARED BY MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223


24686

11/25/13

DATE







HANGER WP H(n)  ARCH RIB  ARCH RIB  HANGER PIN WP PHI(n)  HANGER PIN WP PHI(n)	IN WP PTO(n)
HANGER PIN WP PTI(n)  TOP OF TIE GIRDER TOP FLANGE  HANGER WP T(n)  15.00	\ HANGER PIN WP PI(n)
HANGER W.P. AT DOUBLE HANG BOLTS NOT SHOWN FOR CLARITY	BOLTS NOT SHOWN FOR CLARITY

	C2	2	PH02	2	244.709
	C2	2	PHI2:	2	244.684
	- DI				
HANG	ER @ RI	B	<u>EUM</u>	L I	RY
LOCATION	UPPER Work Point	DI (F	Al	β NGLES	
C1*	H1	2.	.500	85	5°53′28"
C2	Н3	2	. 948	35	5°12′43"
C3*	H2	2.	. 490	9	1°24′01"
C 4	Н5	2.	.740	44	4° 33′17"
C5*	H4	2	. 510	95	5°16′47"
C6	Н8	2	. 677	48	3°37′52"
C7*	H6	2	. 531	99	9°24′41"
C8	H10	2	. 521	55	5°49′26"
C9*	H7	2	. 573	10	5° 15′59"
C10	H12	2	. 458	-11	7° 32′35"
C11*	H9	2	. 615	11	1°16′51"
C12*	H14	2	. 615	-1	11° 16′51"
C13	H11	2	. 458	117	7° 32′35"
C14*	H16	2	. 573	-10	)5° 15′59"
C15	H13	2	. 521	-5	5° 49′26"
C16*	H17	2	. 531	-9	9° 24′41"
C17	H15	2	. 677	-4	8° 37′52"
C18*	H19	2	. 510	-9	5°16′47"
C19	H18	2.	.740	-4	4° 33′17"
C20*	H21	2.	. 490	- Ĉ	31°24′01"
C21	H20	2	. 948	-3	5°12′43"
C22*	H22	2.	,500	-8	5° 53′28"

C22 PHI22 24	4.684
	11 0 0 1
HANGER @ RIB GEOMETRY	
LOCATION UPPER DIM. A B ANGL	ES
C1* H1 2.500 85°53′	28"
C2 H3 2.948 35°12′4	43"
C3* H2 2.490 91°24′	01"
C4 H5 2.740 44°33′	17"
C5* H4 2.510 95°16′4	47"
C6 H8 2.677 48°37′	52"
C7* H6 2.531 99°24′	41"
C8 H10 2.521 55°49′	26"
C9* H7 2.573 105°15′	59"
C10 H12 2.458 -117°32	/35"
C11* H9 2.615 111°16′5	51"
C12* H14 2.615 -111°16′	51"
C13 H11 2.458 117°32′	35"
C14* H16 2.573 -105°15	′59"
C15 H13 2.521 -55° 49°	/26"
C16* H17 2.531 -99°24	′41"
C17 H15 2.677 -48°37	/52"
C18* H19 2.510 -95°16′	47"
C19 H18 2.740 -44°33	′17"
C20* H21 2.490 -91°24′	′01"
C21 H20 2.948 -35°12′	43"
C22* H22 2.500 -85°53	/28"

UPPER

WORK

PH3

PH02

PHI2

PH5

PH04

PHI4

PH06

PHI6

PH10

PH07

PHI7

PH12

PH09

PHI9

PH014

PHI14

PH11

PH016

PHI16

PH13

PH017

PHI17

PH15

PH019

PHI19

PH18

PHI21

PH20

C15

C16

C16

C17

C18

C18

C19

C20

C20

C21

# 232.417 **NOTES**

HANGER PIN WORK POINT COORDINATES

LOWER

WORK

POINT

PT01

PTI1

PT2

PT03

PTI3

PT4

PTI5

PT6

PT07

PTI7

PT8

PT09

PTI9

PT10

PT011

PTI11

PT012

PTI12

PT13

PT014

PTI14

PT15

PT016

PTI16

PT17

PT018

PT118

PT19

PT020

PTI20

PT21

PT022

X (FT.) | Y (FT.)

-232.417

-232.417

-225.917

-186.583

-186.583

-180.083

-140.750

-140.750

-134.250

-94.917

-94.917

-88.417

-49.083

-49.083

-42.583

-3.250

-3.250

3.250

3.250

42.583

49.083

49.083

88.417

94.917

94.917

134.250

140.750

140.750

180.083

186.583

186.583

225.917

232.417

4.563

4.563

4.650

5.181

5.541

5.541

5.593

5.850

5.850

5.884

6.038

6.038

6.056

6.107

6.107

6.107

6.107

6.056

6.038

6.038

5.884

5.850

5.850

5.593

5.541

5.541

5.181

5.112

4.650

4.563

Z (FT.)

NOTE 5)

<u>+</u> 42.049

<u>+</u> 40.112

± 33.781

± 36.305

± 34.371

± 26.333

± 31.082

<u>+</u> 29.149

<u>±</u> 21.165

± 26.669

± 24.736

<u>+</u> 19.379

<u>+</u> 23.479

± 21.547

<u>+</u> 19.187

<u>+</u> 19.355

<u>+</u> 21.287

± 19.355

<u>+</u> 23.479

± 21.547

<u>+</u> 26.669

<u>+</u> 24.736

± 21.165

± 31.082

<u>+</u> 29.149

± 26.333

± 36.305

± 34.371

± 42.049

Over Kentucky Lake & Lake Barkley

ITEM NUMBER

01–180.70

49.370 <u>+</u> 33.781

± 19.379

99.873 <u>+</u> 21.287

103.844 <u>+</u> 19.187

(SEE

X (FT.) | Y (FT.) |

22.401

21.900

49.370

43.835

43.325

77.170

63.324

62.811

96.457

79.793

79.279

103.123

91.695

91.180

103.844

99.359

99.873

99.359

91.695

91.180

103.123

79.793

79.279

96.457

63.324

62.811

77.170

43.835

43.325

-244.709

-244.684

-205.304

-213.450

-213.438

-146.902

-177.967

-177.959

-79.940

-138.962

-138.956

-30.297

-100.130

-100.124

15.865

-59.143

-59.138

59.143

59.138

-15.865

100.130

100.124

30.297

138.962

138.956

79.940

177.967

177.959

146.902

213.450

213.438

205.304

1. FOR ARCH - KEY ELEVATION AND LEGEND, SEE SHEET NO S133.

DISTANCE

BETWEEN

22.215

21.769

50.720

48.321

47.876

81.656

70.544

70.088

108.717

88.430

87.965

116.355

102.443

101.978

117.022

112.142

111.677

112.142

111.677

117.022

102.443

101.978

116.355

88.430

87.965

108.717

70.544

70.088

81.656

48.321

47.876

50.720

22.215

21.769

NOTE 5) | WORK POINTS

Z (FT.)

± 46.969

<u>+</u> 44.894

± 45.937

± 46.969

<u>+</u> 44.895

<u>+</u> 45.936

<u>+</u> 46.970

<u>+</u> 44.895

<u>+</u> 45.936

<u>+</u> 46.970

<u>+</u> 44.896

± 45.935

<u>+</u> 46.970

<u>+</u> 44.896

<u>+</u> 45.934

<u>+</u> 46.971

<u>+</u> 44.897

<u>+</u> 46.971

<u>+</u> 44.897

<u>+</u> 45.934

<u>+</u> 46.970

± 44.896

± 45.935

<u>+</u> 46.970

<u>+</u> 44.896

± 45.936

<u>+</u> 46.970

<u>+</u> 44.895

<u>+</u> 45.936

± 46.969

<u>+</u> 44.895

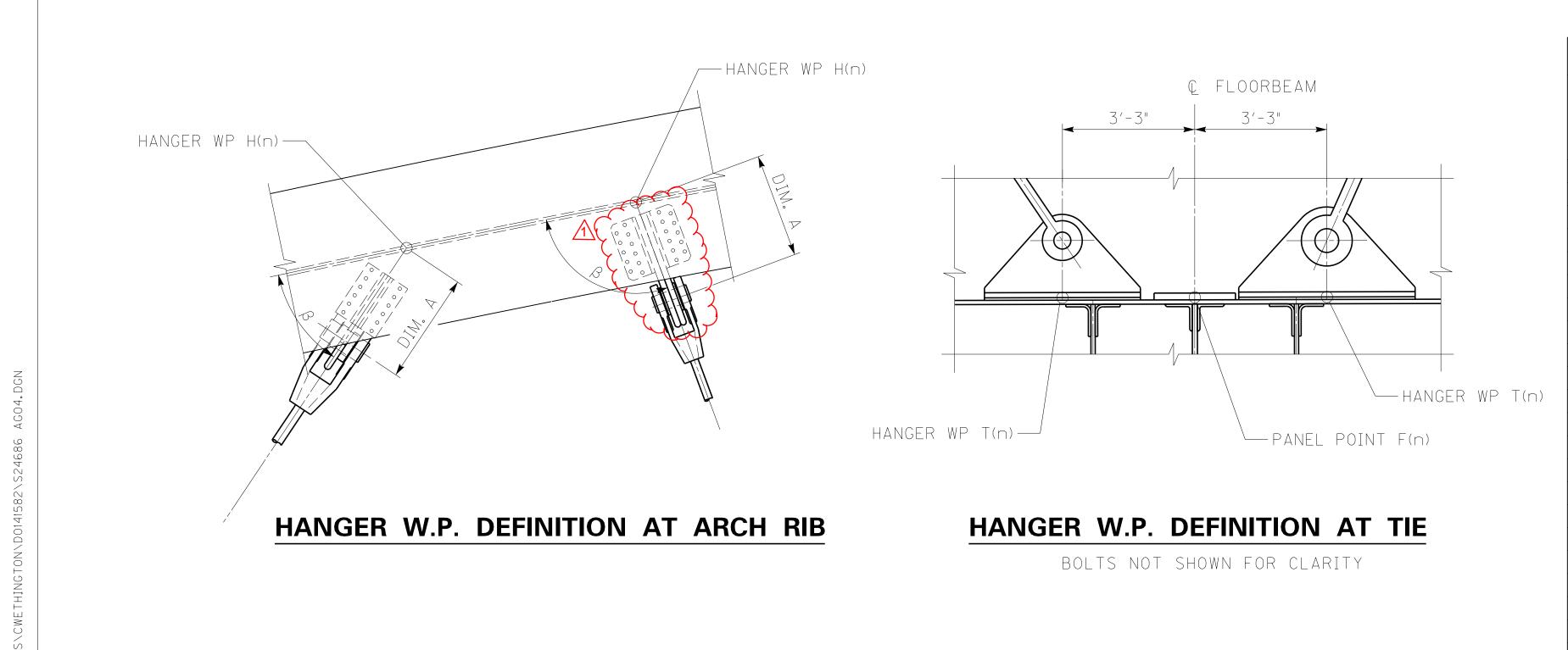
± 45.937

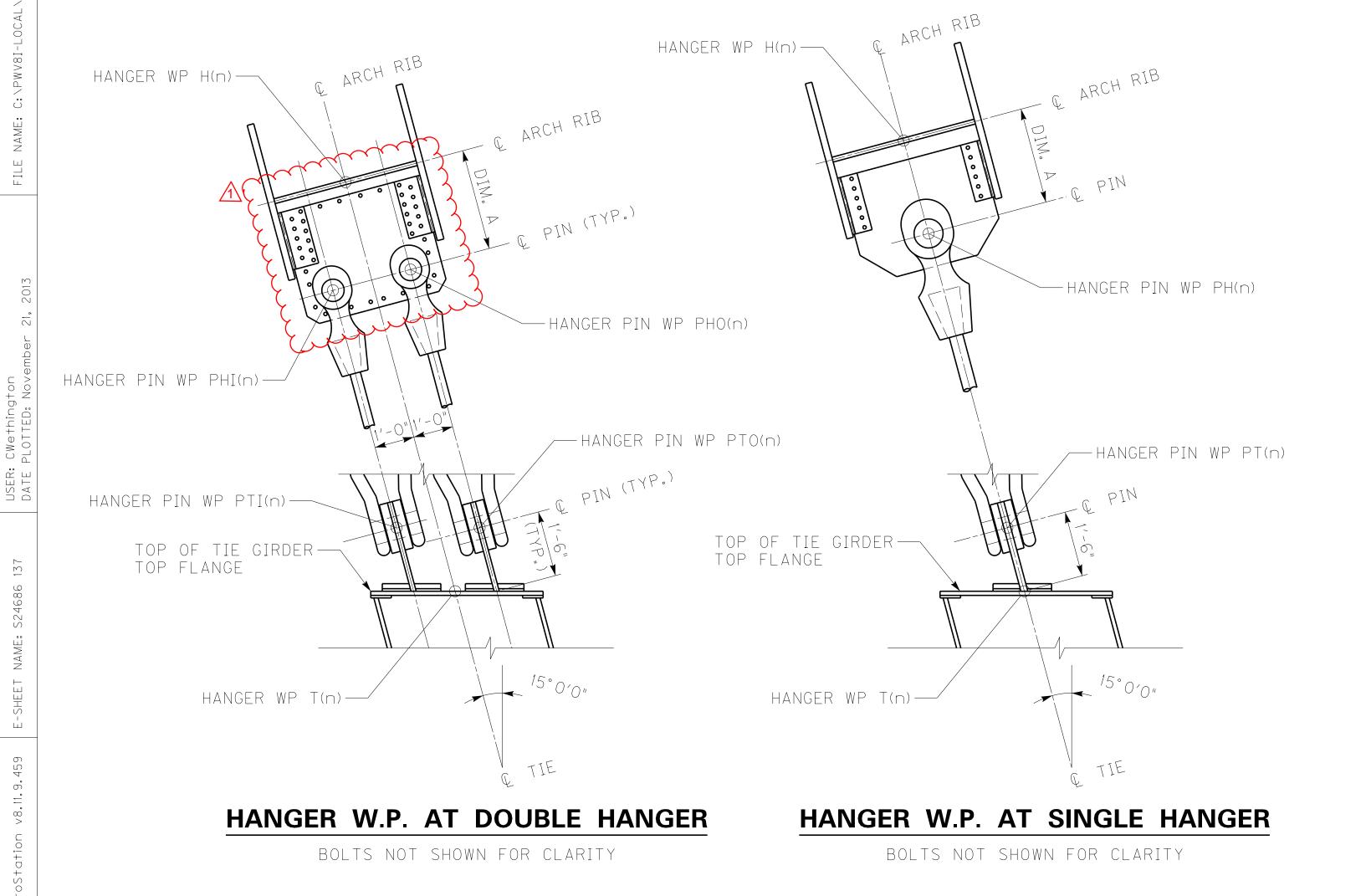
± 46.969

<u>+</u> 44.894

- 2. FOR ARCH RIB, TIE GIRDER AND FLOORBEAM GEOMETRY, SEE SHEET NO. S134-S135.
- 3. FOR HANGER WORK POINTS, SEE SHEET NO. S135.
- 4. FOR HANGERS, CONNECTIONS AND DETAILS, SEE SHEETS NO. S179-S184A.
- 5. POSITIVE Z VALUES REPRESENT THE SOUTH ARCH, NEGATIVE Z VALUES REPRESENT THE NORTH ARCH.

A REVISED RIB HANGER CONNECT	TION DETAILS	11/25/13
REVISION		DATE
DATE: NOVEMBER 15, 2013	CHECKED	ВҮ
DESIGNED BY: CYY	DGM	
DETAILED BY: MJD	CYY	
<b>A</b>	<b>7 3 7 1 1</b>	


Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS


MARSHALL / TRIGG

**US68** KENTUCKY LAKE

MAIN SPAN ARCH GEOMETRY - 4

PREPARED BY MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223





HANGER	UPPER WORK	X (FT.)	Y (FT.)	Z (FT.) (SEE	LOWER	X (FT.)	Y (FT.)	Z (FT.) (SEE	DISTANCE BETWEEN
	POINT	0.4.4.7.00	00 404	NOTE 5)	POINT	070 417	4 5 6 7	NOTE 5)	WORK POINTS
<u>C1</u>	PHO1	-244.709	22.401	± 42.049	PT01	-232.417	4.563	<u>+</u> 46.969	22.215
<u>C1</u>	PHI1	-244.684	21.900	<u>+</u> 40.112	PTI1	-232.417	4.563	+ 44.894	21.769
<u>C2</u>	PH3	-205.304	49.370	<u>+</u> 33.781	PT2	-225.917	4.650	<u>+</u> 45.937	50.720
<u>C3</u>	PH02	-213.450	43.835	± 36.305	PT03	-186.583	5.112	+ 46.969	48.321
C3	PHI2	-213.438	43.325	± 34.371	PTI3	-186.583	5.112	± 44.895	47.876
C4	PH5	-146.902	77.170	<u>+</u> 26.333	PT4	-180.083	5.181	<u>+</u> 45.936	81.656
<u>C5</u>	PH04	-177.967	63.324	<u>+</u> 31.082	PT05	-140.750	5.541	<u>+</u> 46.970	70.544
<u>C5</u>	PHI4	-177.959	62.811	<u>+</u> 29.149	PTI5	-140.750	5.541	<u>+</u> 44.895	70.088
<u> </u>	PH8	-79.940	96.457	<u>±</u> 21.165	PT6	-134.250	5.593	<u>+</u> 45.936	108.717
<u> </u>	PH06	-138.962	79.793	<u>+</u> 26.669	PT07	-94.917	5.850	<u>+</u> 46.970	88.430
<u>C7</u>	PHI6	-138.956	79.279	± 24.736	PTI7	-94.917	5.850	± 44.896	87.965
C8	PH10	-30.297	103.123	<u>+</u> 19.379	PT8	-88.417	5.884	± 45.935	116.355
C9	PH07	-100.130	91.695	<u>+</u> 23.479	PT09	-49.083	6.038	<u>+</u> 46.970	102.443
C9	PHI7	-100.124	91.180	± 21.547	PTI9	-49.083	6.038	<u>+</u> 44.896	101.978
C10	PH12	15.865	103.844	± 19.187	PT10	-42.583	6.056	<u>+</u> 45.934	117.022
C11	PH09	-59.143	99.873	<u>+</u> 21.287	PT011	-3.250	6.107	<u>+</u> 46.971	112.142
C11	PHI9	-59.138	99.359	<u>+</u> 19.355	PTI11	-3.250	6.107	<u>+</u> 44.897	111.677
C12	PH014	59.143	99.873	± 21.287	PT012	3.250	6.107	± 46.971	112.142
C12	PHI14	59.138	99.359	± 19.355	PTI12	3.250	6.107	<u>+</u> 44.897	111.677
C13	PH11	-15.865	103.844	<u>+</u> 19.187	PT13	42.583	6.056	<u>+</u> 45.934	117.022
C14	PH016	100.130	91.695	± 23.479	PT014	49.083	6.038	<u>+</u> 46.970	102.443
C14	PHI16	100.124	91.180	± 21.547	PTI14	49.083	6.038	± 44.896	101.978
C15	PH13	30.297	103.123	± 19.379	PT15	88.417	5.884	± 45.935	116.355
C16	PH017	138.962	79.793	± 26.669	PT016	94.917	5.850	<u>+</u> 46.970	88.430
C16	PHI17	138.956	79.279	± 24.736	PTI16	94.917	5.850	<u>+</u> 44.896	87.965
C17	PH15	79.940	96.457	± 21.165	PT17	134.250	5.593	± 45.936	108.717
C18	PH019	177.967	63.324	± 31.082	PT018	140.750	5.541	<u>+</u> 46.970	70.544
C18	PHI19	177.959	62.811	<u>+</u> 29.149	PT118	140.750	5.541	<u>+</u> 44.895	70.088
C19	PH18	146.902	77.170	± 26.333	PT19	180.083	5.181	± 45.936	81.656
									48.321
				_					47.876
				+					50.720
									22.215
									21. 769
C20 C20 C21 C22 C22	PH021 PHI21 PH20 PH022 PHI22	213.450 213.438 205.304 244.709 244.684	43.835 43.325 49.370 22.401 21.900	± 36.305 ± 34.371 ± 33.781 ± 42.049 ± 40.112	PT020 PTI20 PT21 PT022 PTI22	186.583 186.583 225.917 232.417 232.417	5.112 5.112 4.650 4.563 4.563	+ -	46.969 44.895 45.937 46.969 44.894

Over Kentucky Lake & Lake Barkley

ITEM NUMBER

01–180.70

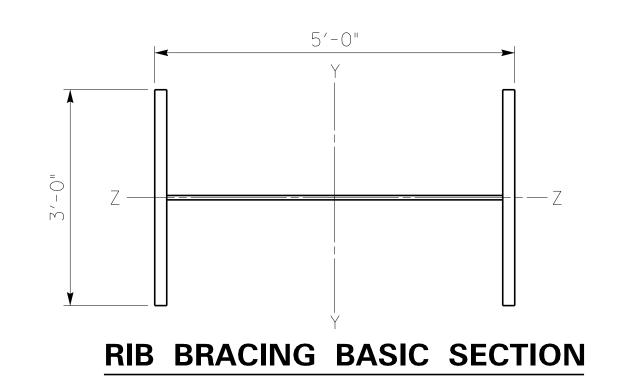
HANGER PIN WORK POINT COORDINATES

HANG	ER @ RI	B GEOM	ETRY
LOCATION	UPPER WORK POINT	DIM. A (FT.)	β ANGLES
C1*	H1	2.500	85°53′28"
C2	Н3	2.948	35°12′43"
C3*	H2	2.490	91°24′01"
C4	Н5	2.740	44° 33′17"
C5*	H4	2.510	95°16′47"
C6	Н8	2.677	48° 37′52"
C7*	H6	2.531	99°24′41"
C8	H10	2.521	55° 49′26"
C9*	H7	2.573	105° 15′59"
C10	H12	2.458	-117° 32′35"
C11*	H9	2.615	111° 16′51"
C12*	H14	2.615	-111° 16′51"
C13	H11	2.458	117° 32′35"
C14*	H16	2.573	-105° 15′59"
C15	H13	2.521	-55° 49′26"
C16*	H17	2.531	-99° 24′41"
C17	H15	2.677	-48° 37′52"
C18*	H19	2.510	-95°16′47"
C19	H18	2.740	-44° 33′17"
C20*	H21	2.490	-91°24′01"
C21	H20	2.948	-35°12′43"
C22*	H22	2.500	-85° 53′28"

- 2. FOR ARCH RIB, TIE GIRDER AND FLOORBEAM GEOMETRY, SEE SHEET NO. S134-S135.
- 3. FOR HANGER WORK POINTS, SEE SHEET NO. S135.
- 4. FOR HANGERS, CONNECTIONS AND DETAILS, SEE SHEETS NO. S179-S184A.
- 5. POSITIVE Z VALUES REPRESENT THE SOUTH ARCH, NEGATIVE Z VALUES REPRESENT THE NORTH ARCH.

AREVISED RIB HANGER CONNECT	TION DETAILS	11/25/13
REVISION		DATE
DATE: NOVEMBER 15, 2013	CHECKED	ВҮ
DESIGNED BY: CYY	DGM	
DETAILED BY: MJD	CYY	
<b>A</b>	Z 317	

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS


MARSHALL / TRIGG

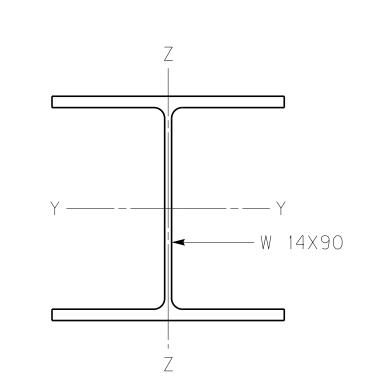
ROUTE US68

KENTUCKY LAKE MAIN SPAN ARCH GEOMETRY - 4

PREPARED BY MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

			RIB E	BRACIN	G DEM	AND				RES	SISTA (KSI)	NCE	DEMAND / RESISTANO		
SEGMENT		LC	)ADS (K	IPS)			ONTROLL OMBINAT				STR	EXT-I	STR	EXT-I	
		DC	DW	LL+I+BR	WS		STR-III	EX	T-I	-					
	P	-74	-1	-9	-2	fa	0.5		0.5	Far	20.5	22.8			
RB1 RB9	Му	200	8	104	2598	fby	11.0	EQ 5	0.4	Fbyr	50.0	50.0	0.25	0.24	
1105	Mz	20	3	19	34	fbz	1.1		10.9	Fbzr	50.0	50.0			
	P	-13	-1	-7	-2	fa	0.1		0.2	Far	26.6	29.5			
RB2 RB8	Му	2	2	128	3225	fby	12.9	EQ 5	1.1	Fbyr	50.0	50.0	0.28	0.23	
	Mz	32	3	18	25	fbz	1.2		10.1	Fbzr	50.0	50.0			
	P	-30	-1	-7	2	fa	0.3		0.3	Far	31.5	35.0			
RB3 RB7	Му	62	15	173	2758	fby	11.4	EQ 1	7.1	Fbyr	50.0	50.0	0.26	0.17	
	Mz	25	2	14	52	fbz	1.6		1.1	Fbzr	50.0	50.0			
	P	-15	2	-5	-2	fa	0.2		0.1	Far	34.0	37.8			
RB4 RB6	Му	55	14	157	1325	fby	5.6	EQ 1	4.3	Fbyr	50.0	50.0	0.15	0.11	
	Mz	43	2	11	60	fbz	1.8		1.3	Fbzr	50.0	50.0			
	Р	-21	-1	-8	-1	fa	0.2		0.3	Far	34.6	38.4			
RB5	Му	1	1	108	91	fby	0.3	EQ 5	0.4	Fbyr	50.0	50.0	0.04	0.07	
	Mz	65	1	6	28	fbz	1.6		3.1	Fbzr	50.0	50.0			




## **RIB BRACING NOTES**

1. DESIGN IS CONTROLLED BY THE FOLLOWING EQUATIONS: IF fa/Far < 0.2, fa/2Far + fby/Fbyr + fbz/Fbzr <= 1.0</pre> OTHERWISE, fa/Far + 8/9(fby/Fbyr + fbz/Fbzr) <= 1.0 WHERE: fa IS FACTORED AXIAL STRESSES OF THE RIB BRACING fby IS FACTORED Y-Y AXIS BENDING STRESSES OF THE RIB BRACING fbz IS FACTORED Z-Z AXIS BENDING STRESSES OF THE RIB BRACING Far IS GOVERNING AXIAL RESISTANCE OF THE RIB BRACING (IN STRESSES) Fbyr IS Governing Y-Y axis bending resistance of the Rib bracing (in stresses) fbzr Is governing Z-Z axis bending resistance of the Rib bracing (in stresses)

LOWER LATERAL BRACING SECTION PROPERTIES LOWER LATERAL BRACING DEMANDS														RES	SISTA	NCE	DEMAND / RESISTANCE							
SECTION	FCM	STEEL	AREA	Iy	Iz	Sy	Sz				LOA	ADS				С	ONTROLL COMBIN		A D		STR	EXT-I	STR	EXT-I
		GRADE	(IN ² )	(IN ⁴ )	([N 4)	([N ³ )	$(IN^3)$		DC	$\square$ $\mathbb{W}$		SH		WS	E Q		STR- I	EX	T-I					
W14X90	NO	50W	26	362	999	50	143	P	128	38	86	120	14	51	81	Pu	442	EQ 3	323	Pr	1090	1363	0.58	0.36
								My	12	_	_	_	_	_	_	Mu	17		12	Mr	89	89		

## LOWER LATERAL BRACING NOTES

- 1. LOADS AND RESISTANCES ARE GIVEN IN KIPS FOR AXIAL FORCES AND IN KIP-FT FOR MOMENT.
- 2. DESIGN IS CONTROLLED BY THE INTERACTION EQUATION: IF Pu/Pr < 0.2, Pu/2Pr + Mu/Mr <= 1.0
  - OTHERWISE, Pu/Pr + 8.0/9.0 (Mu/Mr) <= 1.0
    WHERE: Pu IS FACTORED AXIAL FORCE
    Pr IS TENSILE RESISTANCE
    Mu IS FACTORED BENDING MOMENT DUE TO SELF WEIGHT
    Mr IS BENDING RESISTANCE



LOWER LATERAL BRACING BASIC SECTION

#### **NOTES**

- 1. FOR GENERAL LOAD TABLE NOTES, BRACING PLAN, FRAMING PLAN AND LEGEND, SEE SHEET NO. S141.
- 2. FOR RIB BRACING, CONNECTIONS AND DETAILS, SEE SHEET NOS. S164-S170.
- 3. FOR LOWER LATERAL BRACING, CONNECTIONS AND DETAILS, SEE SHEET NO. S152, S190, S191 & S195.



01–180.70

**US68 KENTUCKY LAKE** BRACING MEMBER FORCES PREPARED BY

AREVISED PLATE SIZES

DATE: NOVEMBER 15, 2013

DESIGNED BY: CYY/JAW

DETAILED BY: MJD

MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

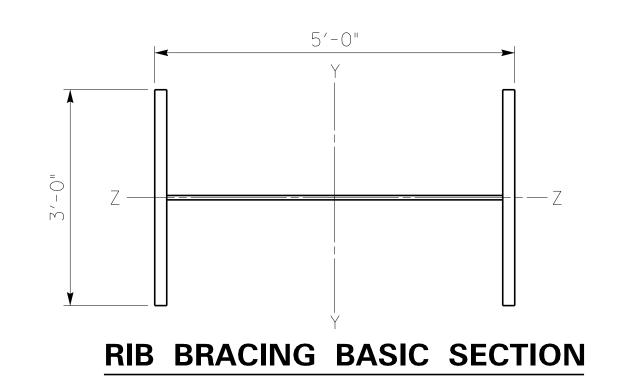
REVISION

Commonwealth of Kentucky

DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG

24686


11/25/13

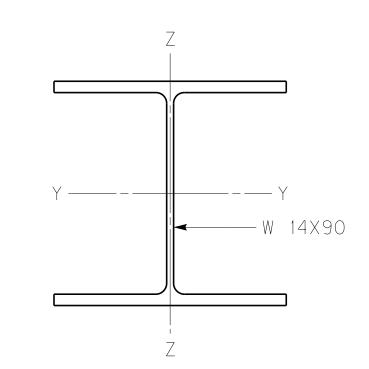
DATE

CHECKED BY

ITEM NUMBER

			RIB	BRACINO	G DEM	AND				RES	SISTA (KSI)	NCE		AND / TANCE
SEGMENT		LC	)ADS (k	(IPS)			CONTROLL OMBINAT				STR	EXT-I	STR	EXT-I
		DC	DW	LL+I+BR	WS		STR-III	EX	T-I					
	P	-74	-1	-9	-2	fa	0.5		0.5	Far	20.5	22.8	0.25	
RB1 RB9	Му	200	8	104	2598	fby	11.0	EQ 5	0.4	Fbyr	50.0	50.0		0.24
KB9 	Mz	20	3	19	34	fbz	1.1		10.9	Fbzr	50.0	50.0		
	P	-13	-1	-7	-2	fa	0.1	EQ 5	0.2	Far	26.6	29.5		
RB2 RB8	Му	2	2	128	3225	fby	12.9		1.1	Fbyr	50.0	50.0	0.28	0.23
1100	Mz	32	3	18	25	fbz	1.2		10.1	Fbzr	50.0	50.0		
DD 7	P	-30	-1	-7	2	fa	0.3		0.3	Far	31.5	35.0		
RB3 RB7	Му	62	15	173	2758	fby	11. 4	EQ 1	7.1	Fbyr	50.0	50.0	0.26	0.17
KR.	Mz	25	2	14	52	fbz	1.6		1.1	Fbzr	50.0	50.0		
	P	-15	2	-5	-2	fa	0.2	EQ 1		0.1	Far	ar 34.0 37.8		
RB4	Му	55	14	157	1325	fby	5.6		EQ 1 4.3	Fbyr	50.0	50.0	0.15	0.11
RB6 -	Mz	43	2	11	60	fbz	1.8		1.3	Fbzr	50.0	50.0		
	Р	-21	-1	-8	-1	fa	0.2		0.3	Far	34.6	38.4		
RB5	Му	1	1	108	91	fby	0.3	EQ 5	0.4	Fbyr	50.0	50.0	0.04	0.07
	Mz	65	1	6	28	fbz	1.6		3.1	Fbzr	50.0	50.0		




## **RIB BRACING NOTES**

1. DESIGN IS CONTROLLED BY THE FOLLOWING EQUATIONS: IF fa/Far < 0.2, fa/2Far + fby/Fbyr + fbz/Fbzr <= 1.0</pre> OTHERWISE, fa/Far + 8/9(fby/Fbyr + fbz/Fbzr) <= 1.0 WHERE: fa IS FACTORED AXIAL STRESSES OF THE RIB BRACING fby IS FACTORED Y-Y AXIS BENDING STRESSES OF THE RIB BRACING fbz is factored z-z axis bending stresses of the Rib bracing far is governing axial resistance of the Rib bracing (in stresses) Fbyr IS Governing Y-Y axis bending resistance of the Rib bracing (in stresses) fbzr Is governing Z-Z axis bending resistance of the Rib bracing (in stresses)

LOWER LATERAL BRACING SECTION PROPERTIES						LOWER LATERAL BRACING DEMANDS							RESISTANCE			DEMAND / RESISTANCE								
SECTION	FCM	STEEL GRADE	AREA	Iy	IZ	Sy (IN 3)	SZ (IN 3)		DC	DW	LOA LL+I+BR		TU	WS	EQ	C	COMBIN	JATIONS			STR	EXT-I	STR	EXT-I
WIAVOO	NIO	F.O.W.		(11/1 /	(11)	(11)	147	P	128	38	86	120	14	51	81	Pu	STR- I 442		T-I 323	Pr	1090	1363	0.50	0.70
W14X90	NO	50W	26	362	999	50	143	Му	12	_	-	_	_	-	-	Mu	17	EQ 3	12	Mr	89	89	0.58	0.36

#### LOWER LATERAL BRACING NOTES

- 1. LOADS AND RESISTANCES ARE GIVEN IN KIPS FOR AXIAL FORCES AND IN KIP-FT FOR MOMENT.
- 2. DESIGN IS CONTROLLED BY THE INTERACTION EQUATION: IF Pu/Pr < 0.2, Pu/2Pr + Mu/Mr <= 1.0 OTHERWISE, Pu/Pr + 8.0/9.0 (Mu/Mr) <= 1.0
  WHERE: Pu IS FACTORED AXIAL FORCE
  Pr IS TENSILE RESISTANCE
  Mu IS FACTORED BENDING MOMENT DUE TO SELF WEIGHT
  Mr IS BENDING RESISTANCE



LOWER LATERAL BRACING BASIC SECTION

#### **NOTES**

- 1. FOR GENERAL LOAD TABLE NOTES, BRACING PLAN, FRAMING PLAN AND LEGEND, SEE SHEET NO. S141.
- 2. FOR RIB BRACING, CONNECTIONS AND DETAILS, SEE SHEET NOS. S164-S170.
- 3. FOR LOWER LATERAL BRACING, CONNECTIONS AND DETAILS, SEE SHEET NO. S152, S190, S191 & S195.

LAKEBRIDGE		
LAKEBRIDGE	<del></del>	
	LAKE	BRIDGE

ITEM NUMBER 01–180.70

MARSHALL / TRIGG **US68** 

**KENTUCKY LAKE** BRACING MEMBER FORCES

Commonwealth of Kentucky

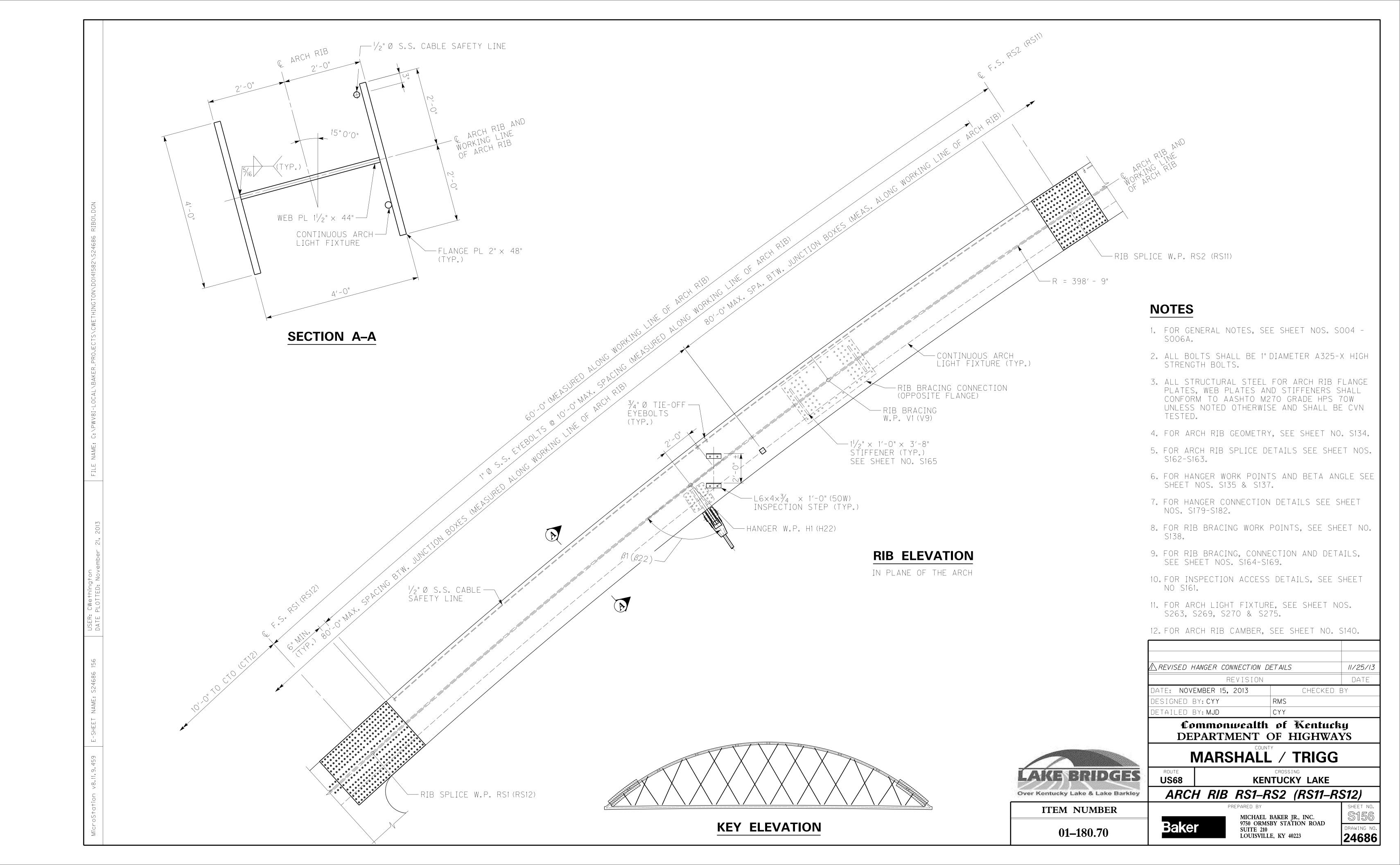
DEPARTMENT OF HIGHWAYS

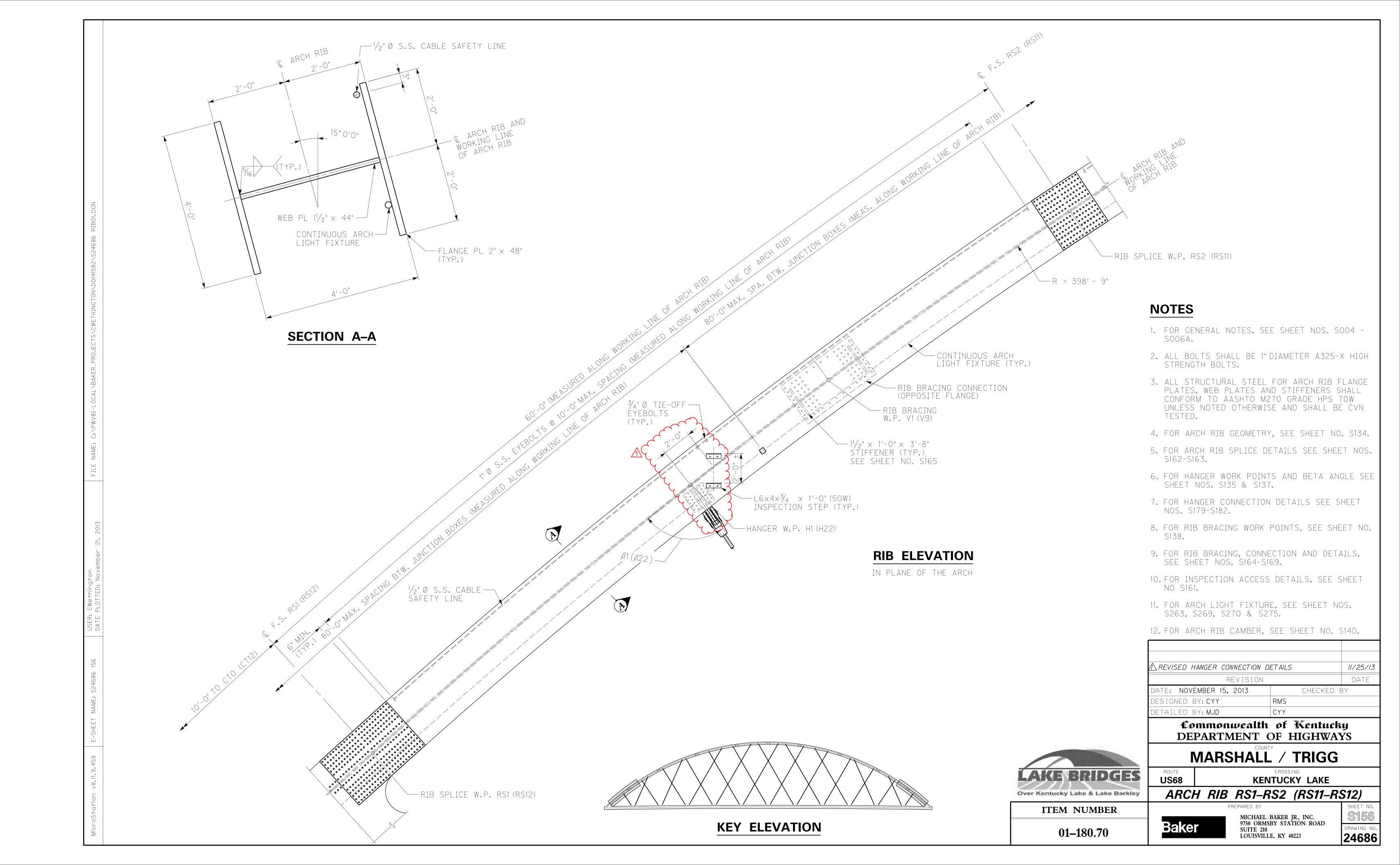
REVISION

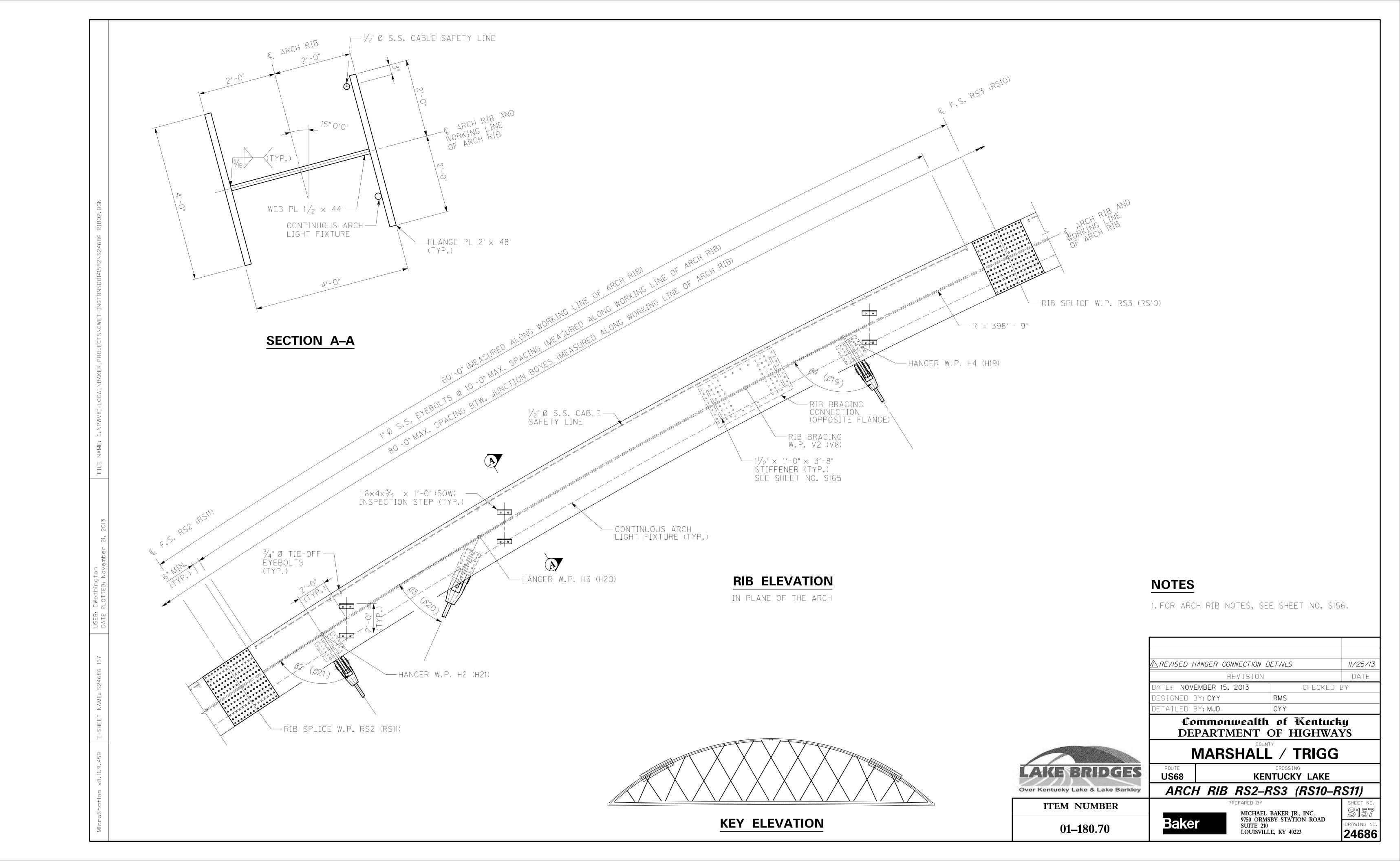
AREVISED PLATE SIZES

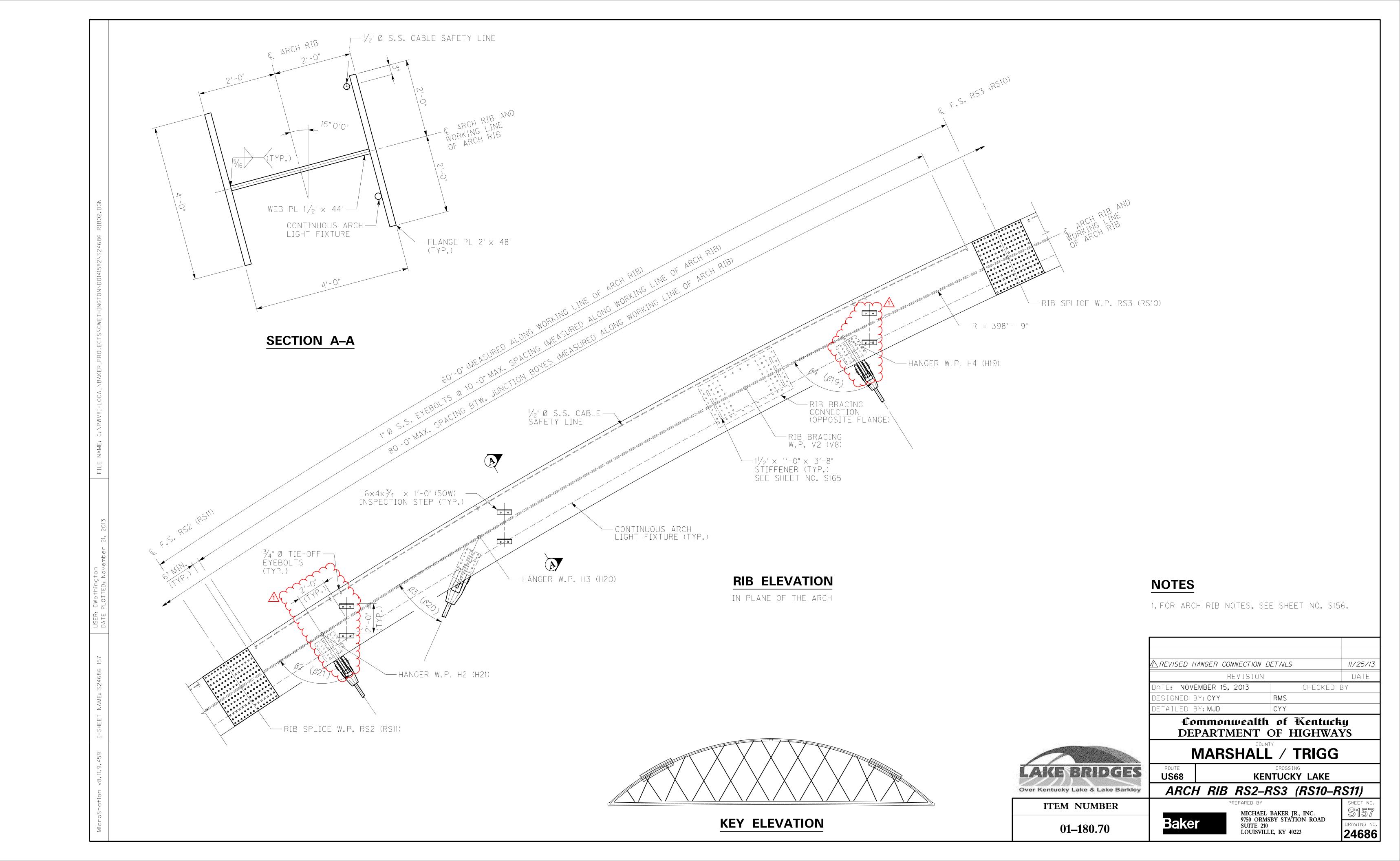
DATE: NOVEMBER 15, 2013

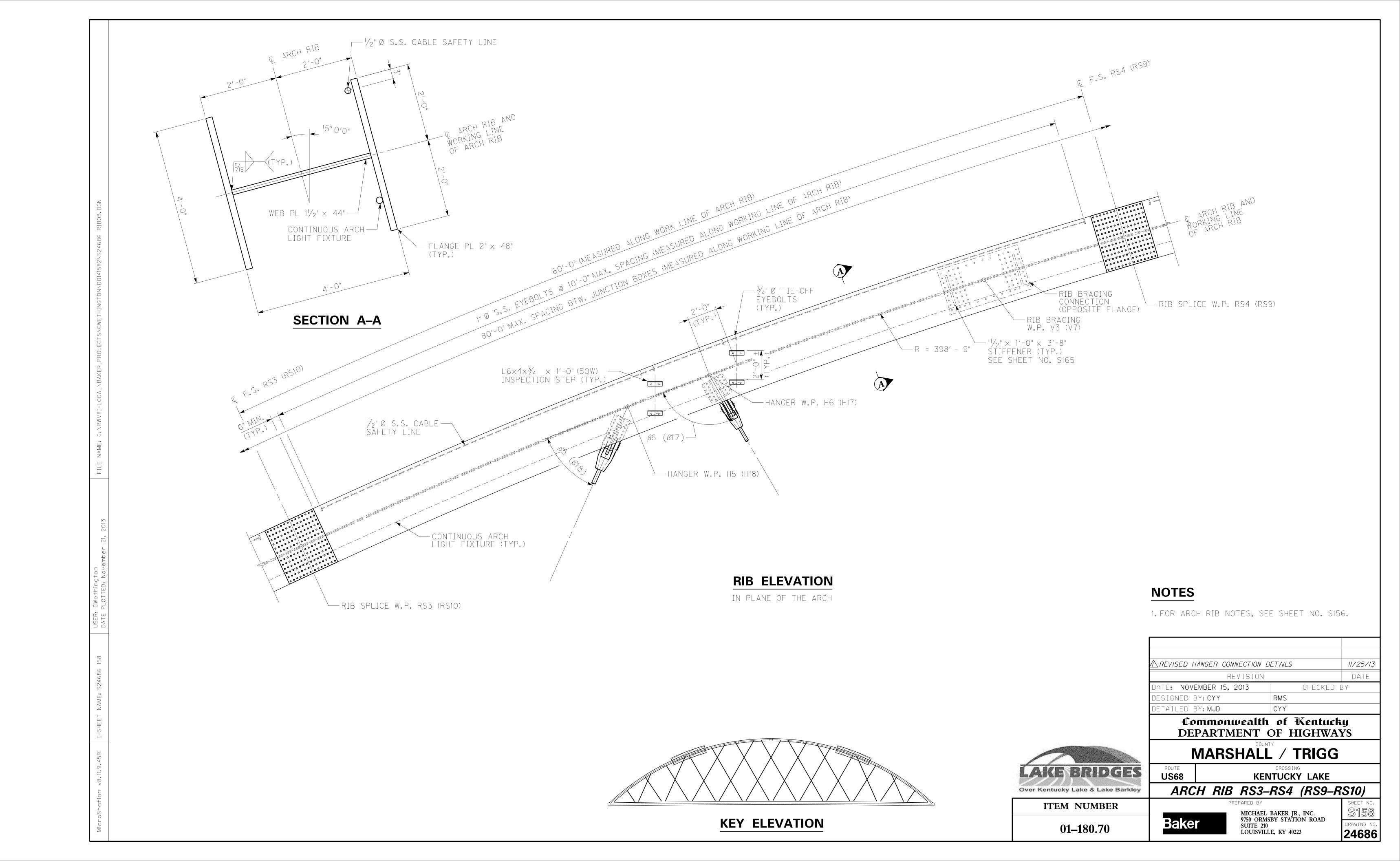
DESIGNED BY: CYY/JAW

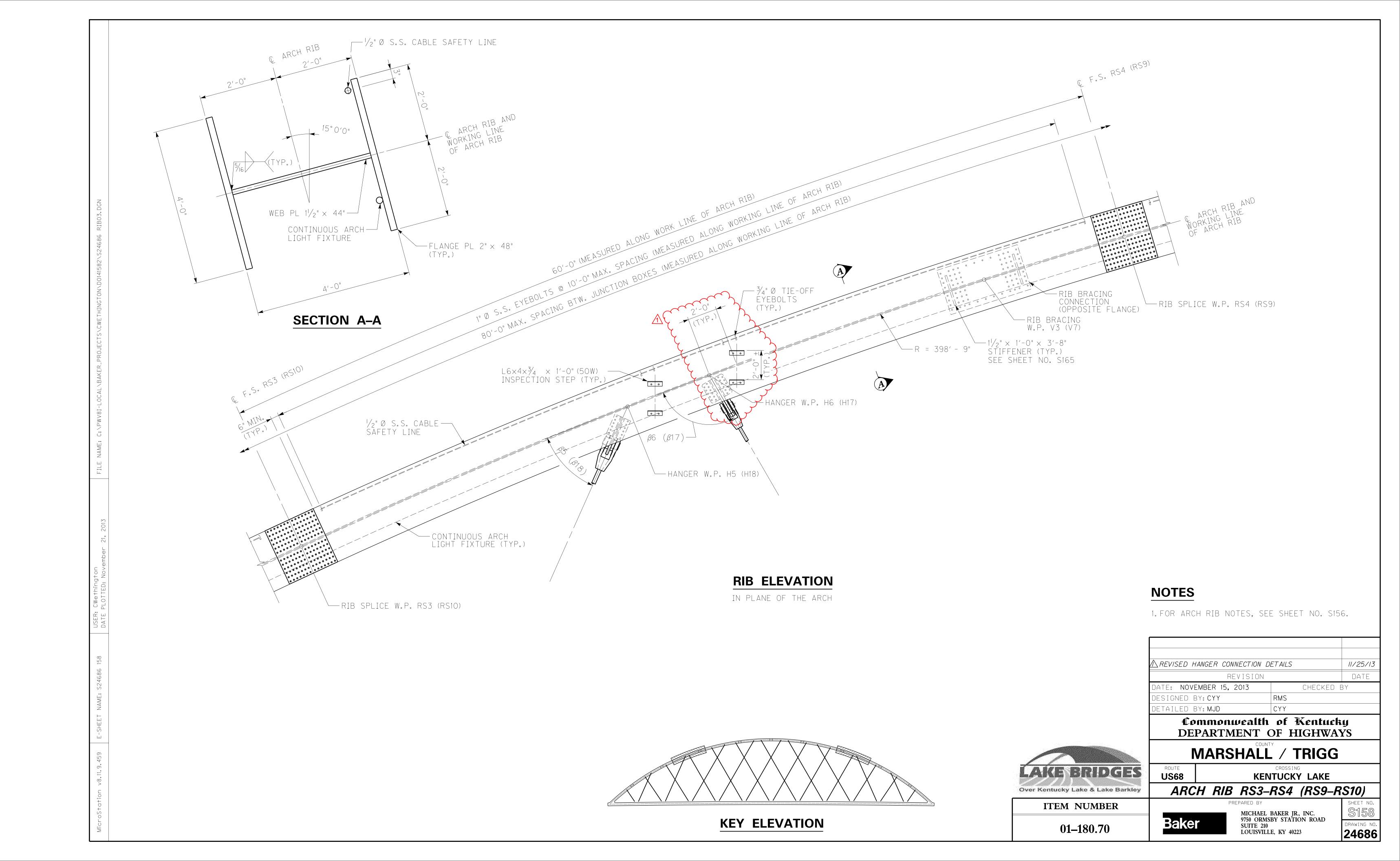

DETAILED BY: MJD

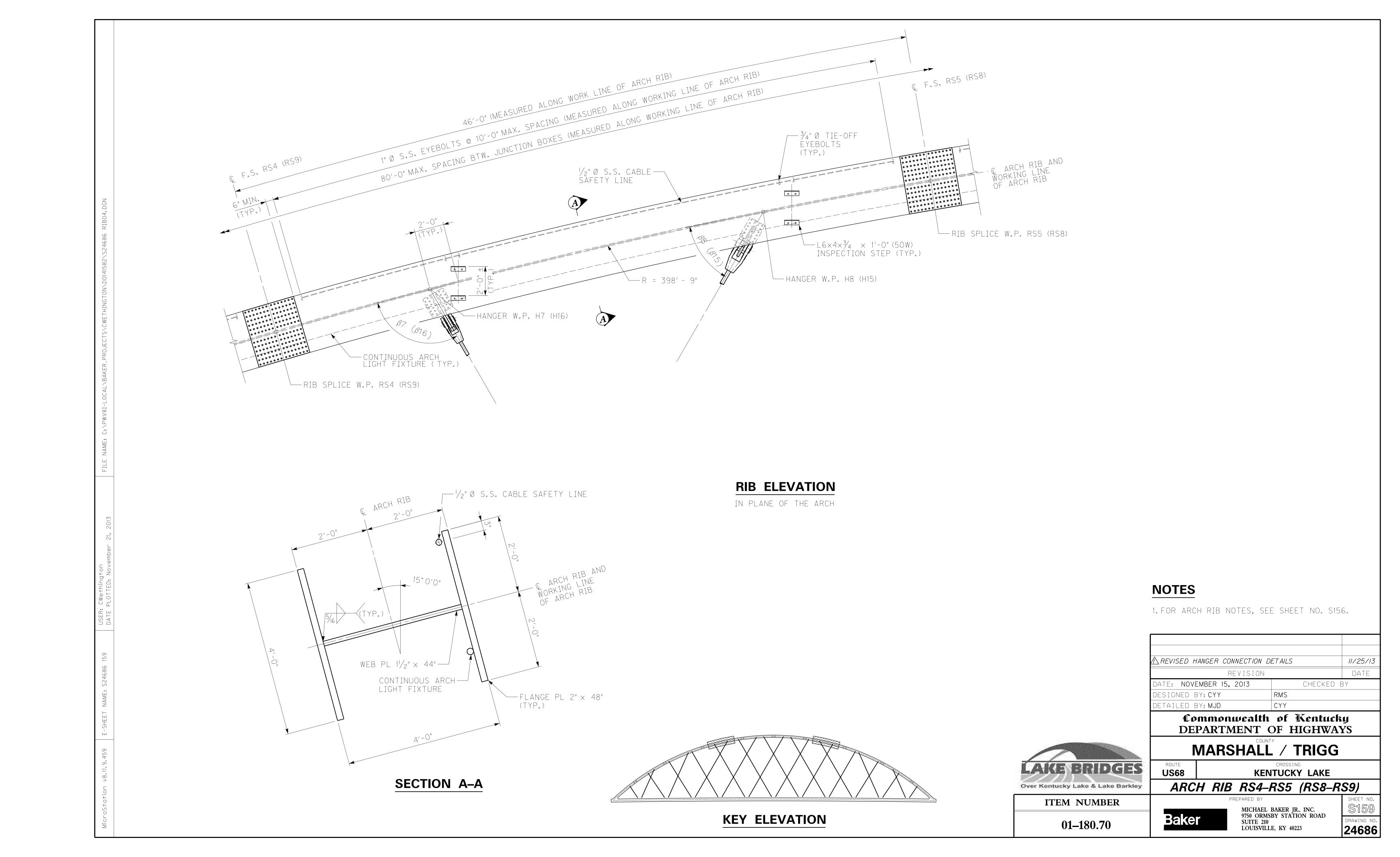

PREPARED BY MICHAEL BAKER JR., INC. 9750 ORMSBY STATION ROAD SUITE 210 LOUISVILLE, KY 40223

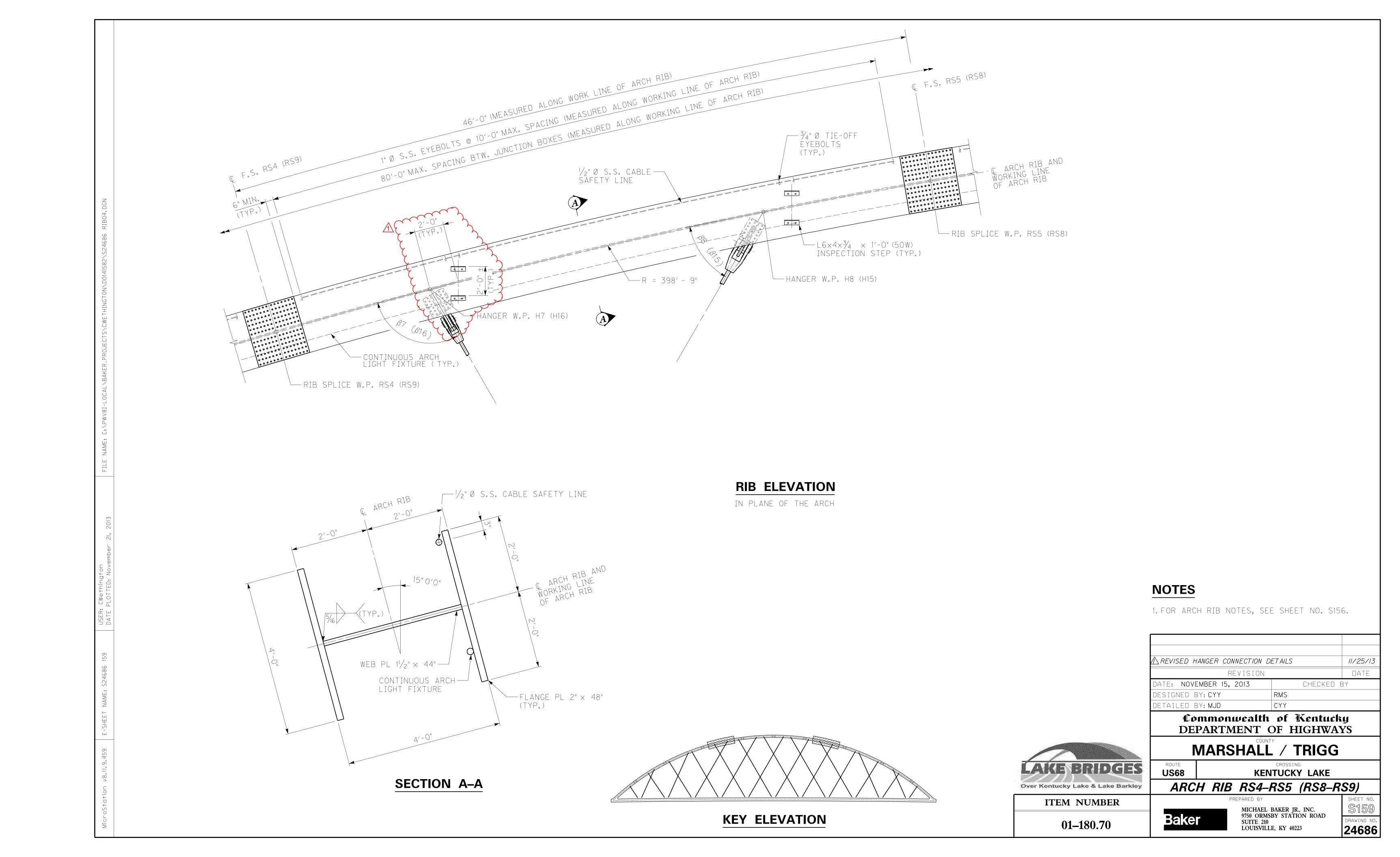

24686

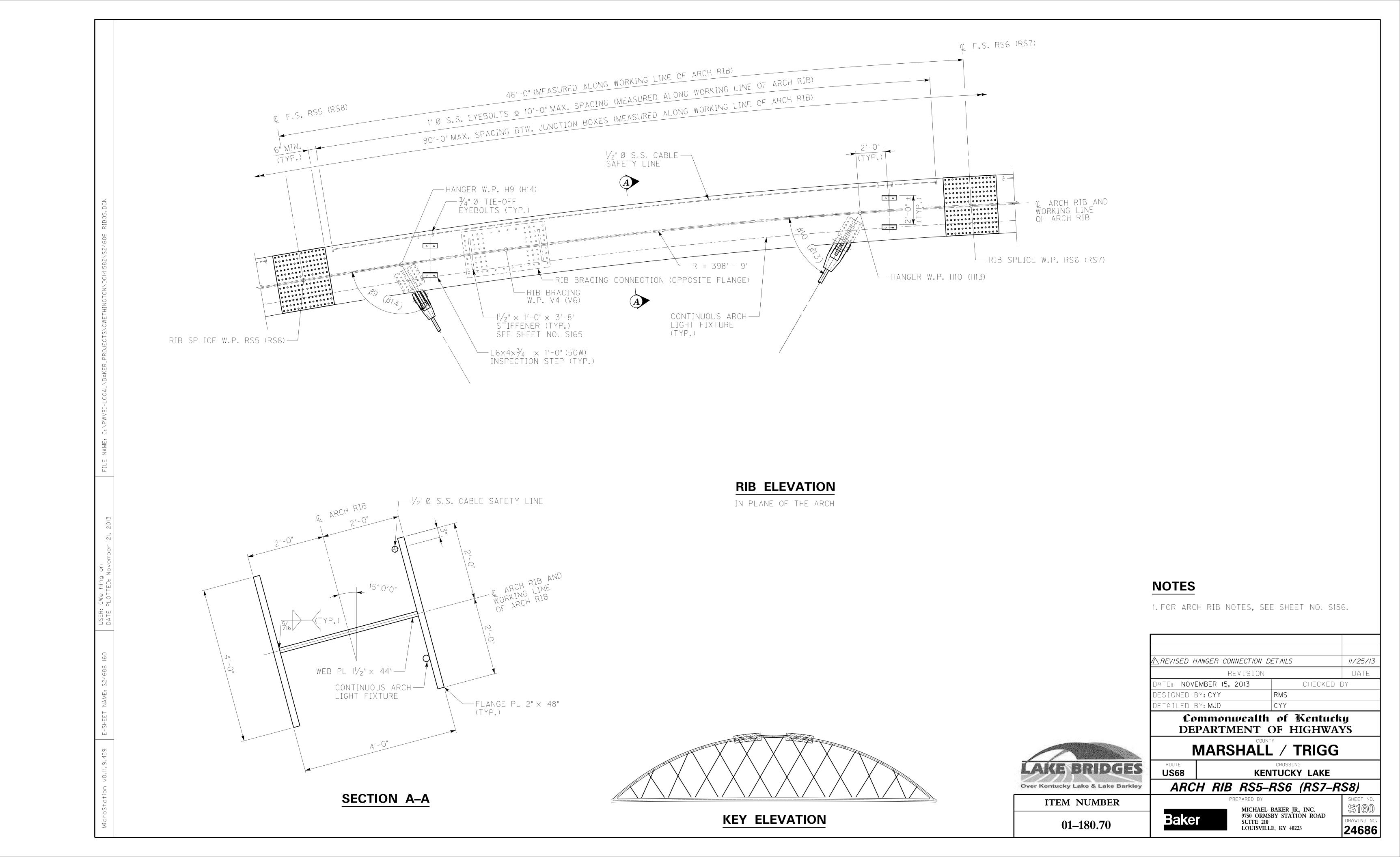

11/25/13

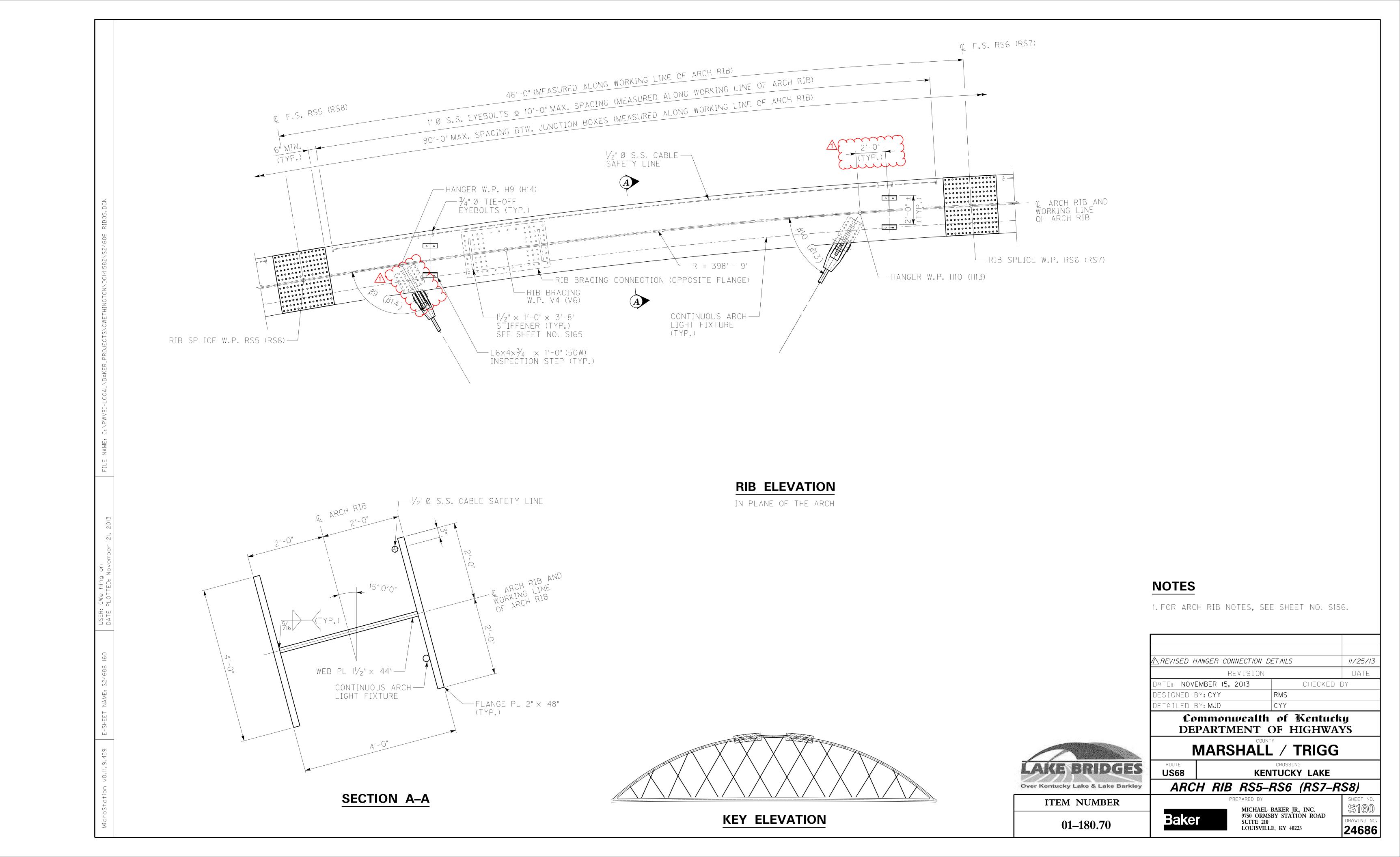

DATE



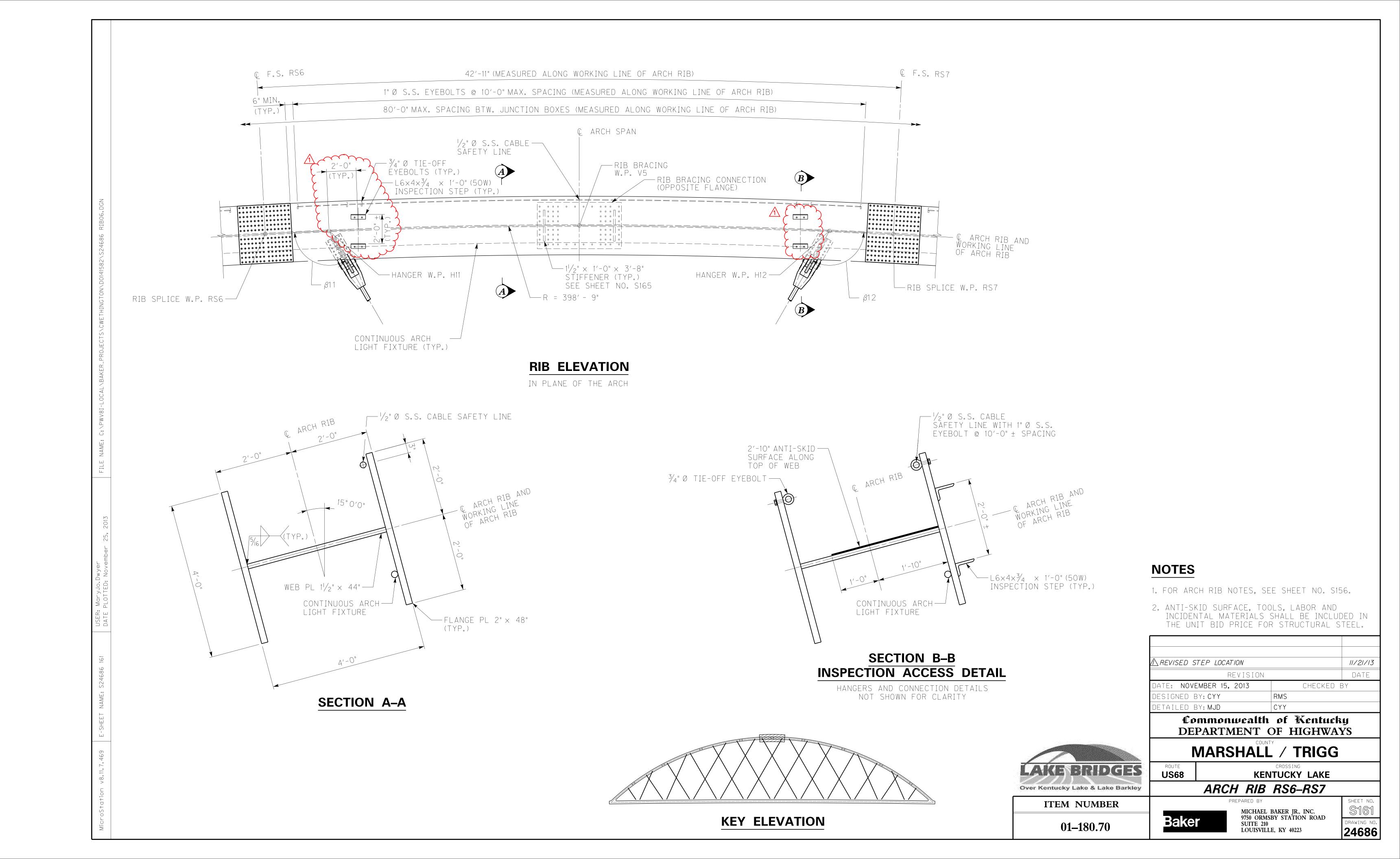



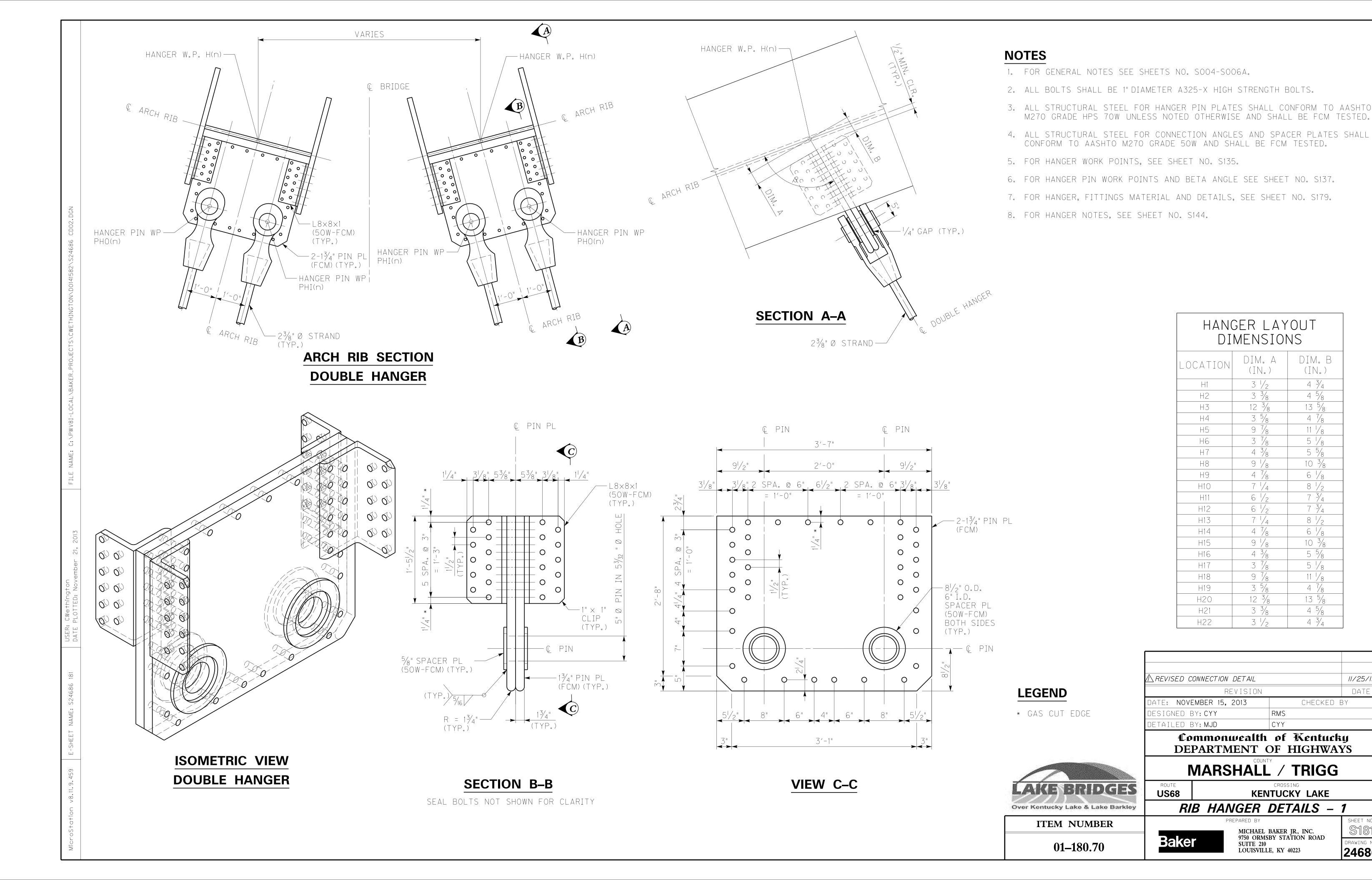
















 $4 \frac{3}{4}$ 

4 5/8

 $4\frac{7}{8}$ 

 $11 \frac{1}{8}$ 

5 1/8

10 3/8

6 1/8

8 1/2

7 3/4

8 1/2

6 1/8

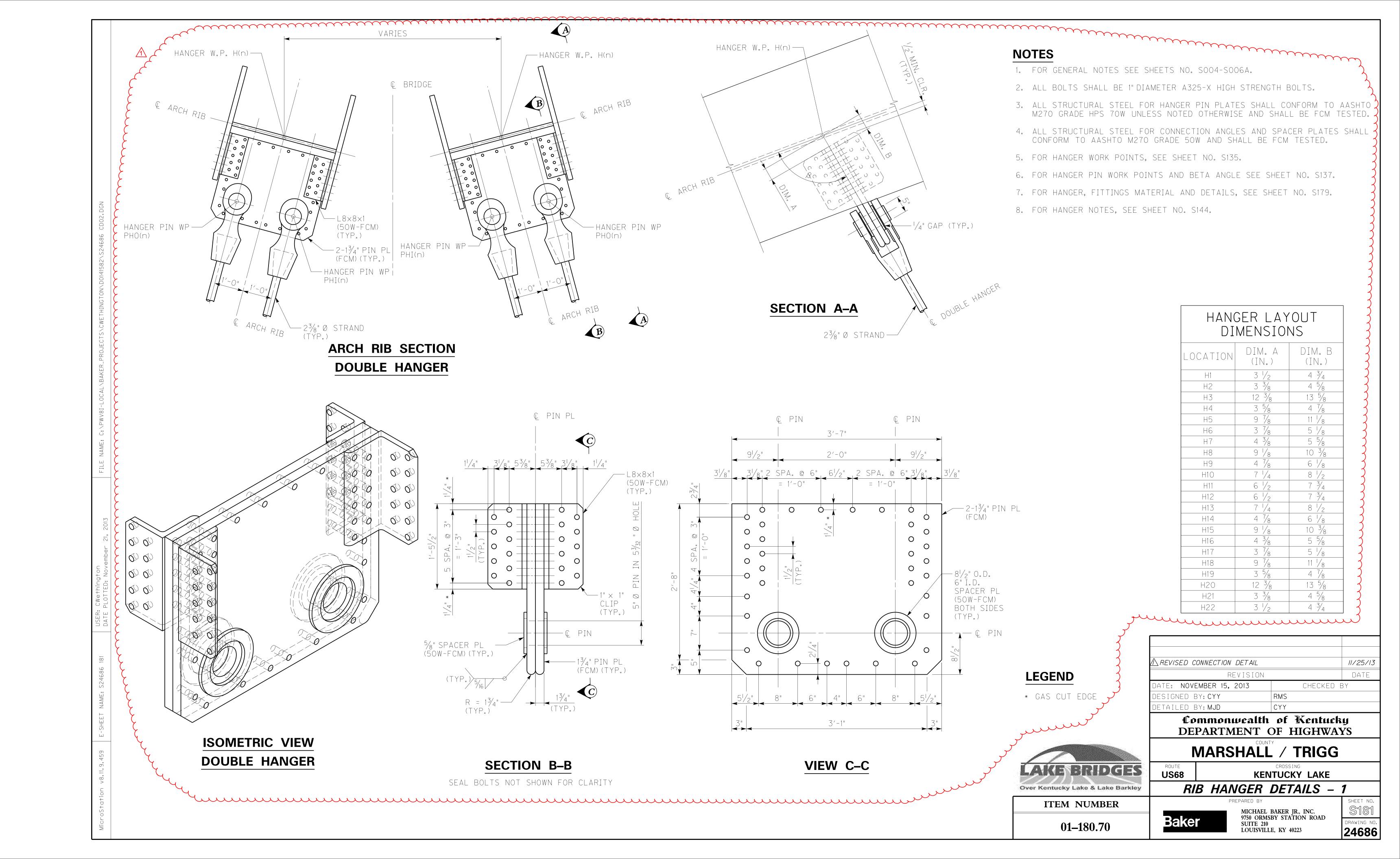
 $10^{-3}/_{8}$ 

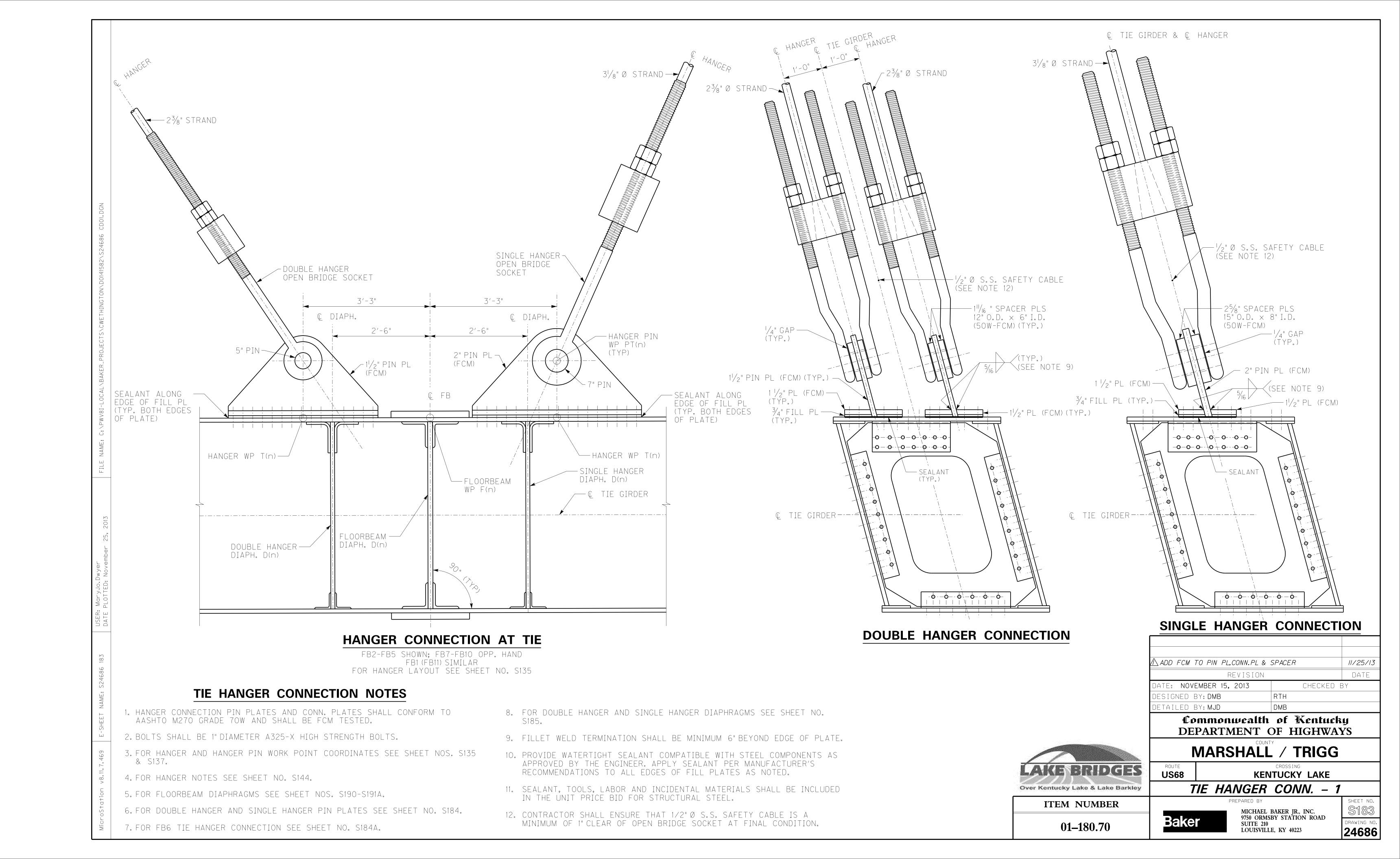
5 5/8

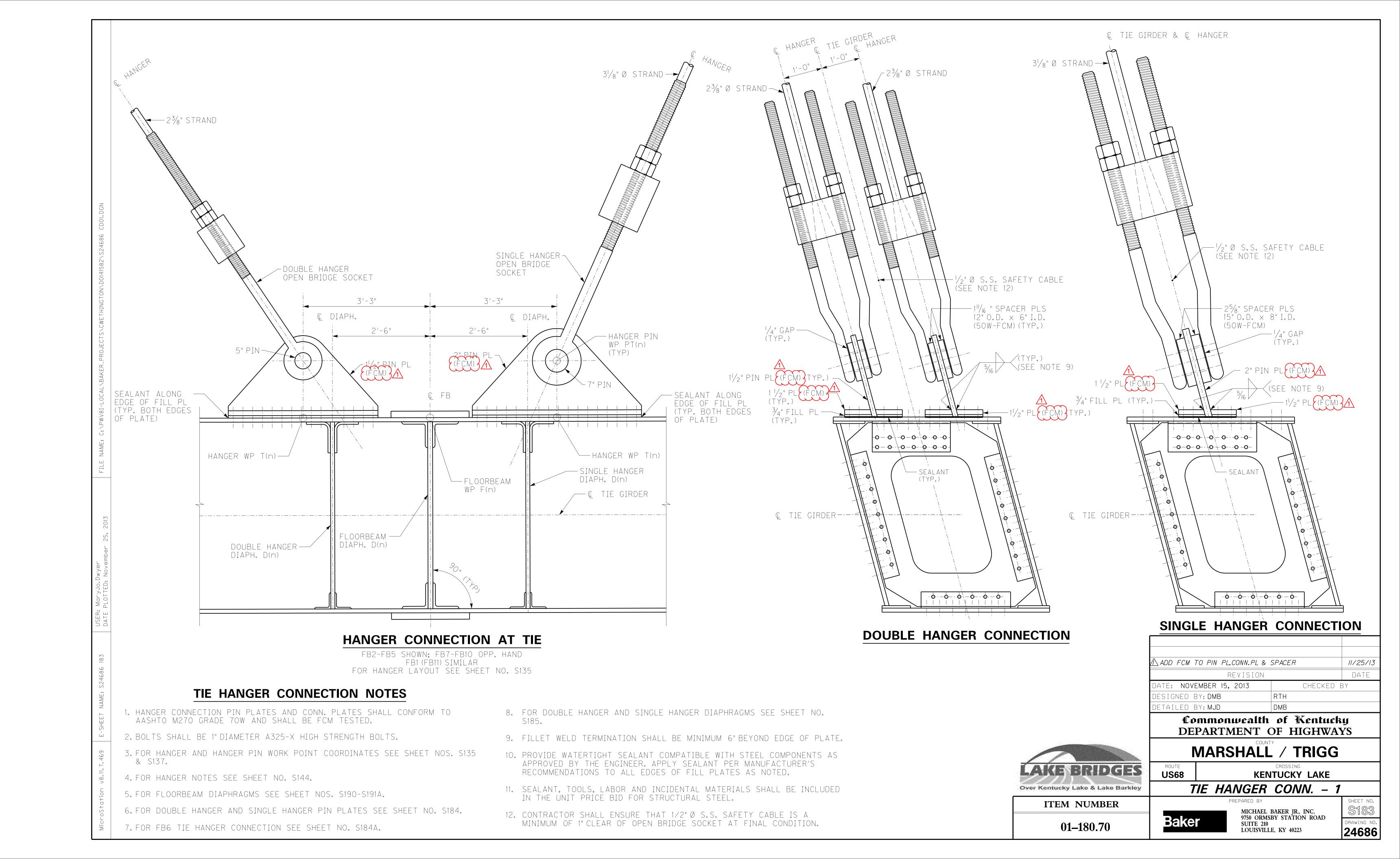
5 1/8

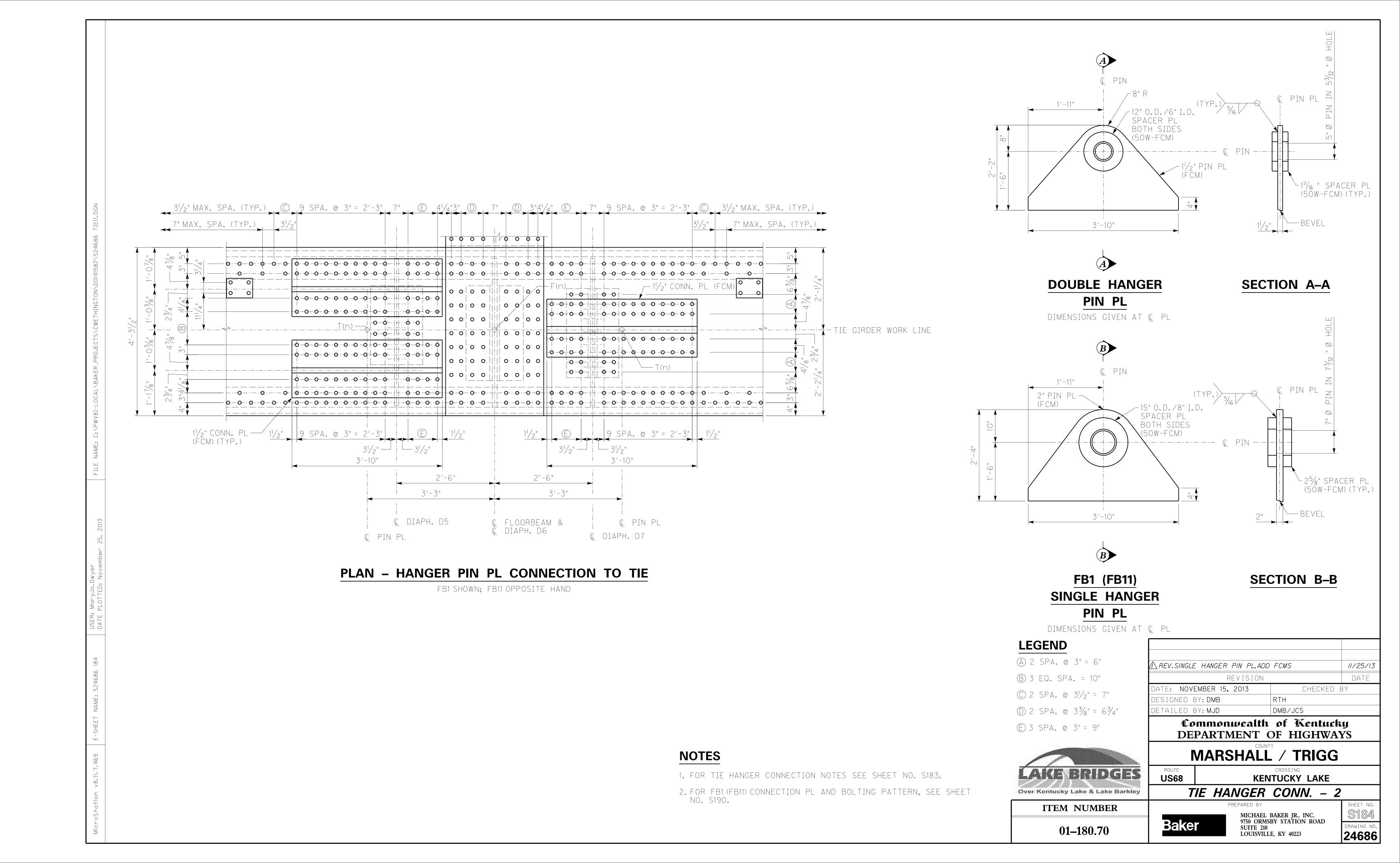
 $11 \frac{1}{8}$ 

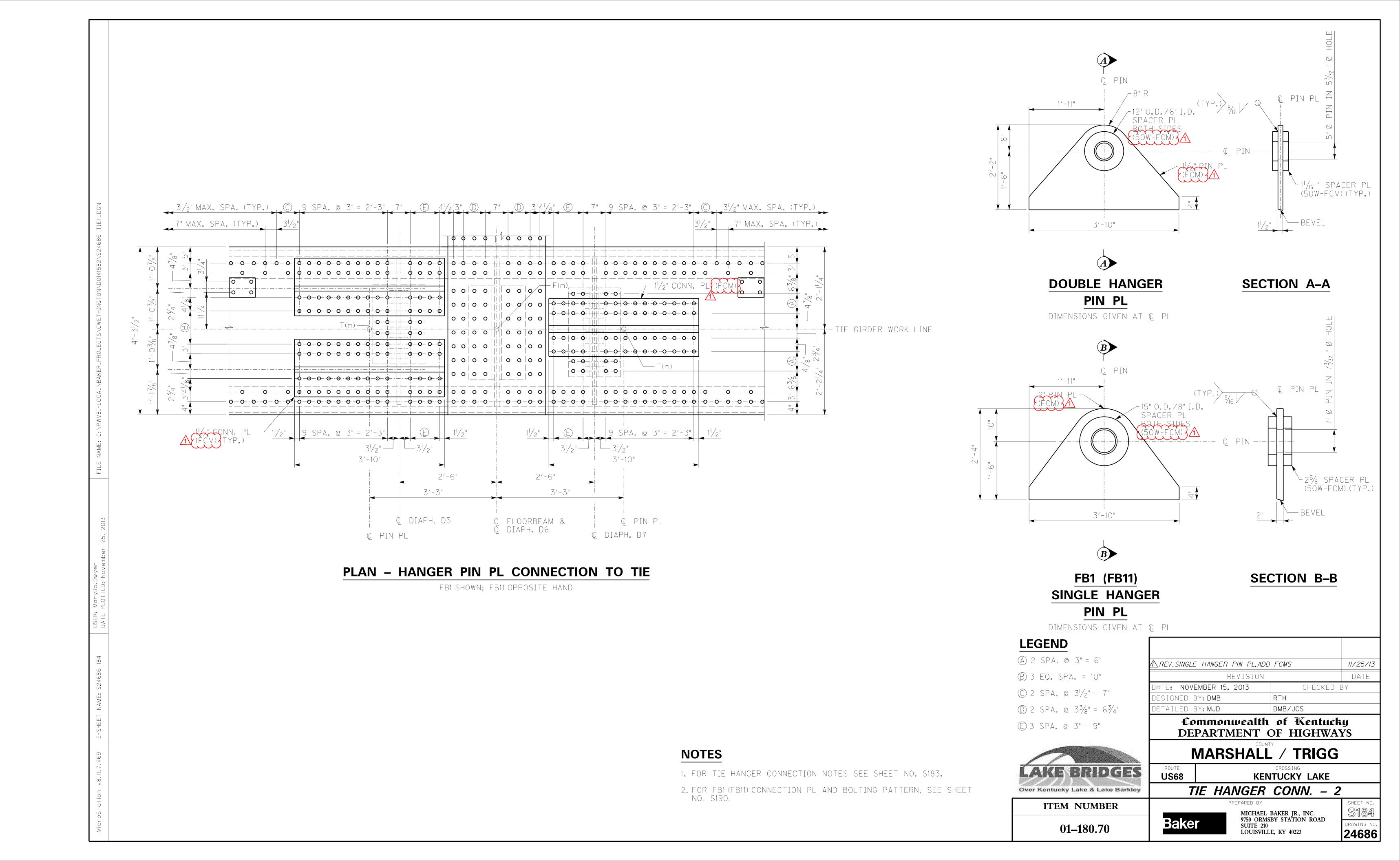
 $4^{7/8}$ 


 $4\frac{5}{8}$ 


4 3/4


11/25/13


DATE


S181











REVISED 11/25/13

ITEM CODE	ITEM	UNIT	TOTAL
2650	MAINTAIN & CONTROL TRAFFIC	LP SUM	1
 3666	UTILITY LINE HANGER FOR BRIDGE	EACH	15
4761	LIGHTING CONTROL EQUIPMENT	EACH	4
	NAVIGATION LIGHTING		
4775	NAVIGATION LIGHT 360 DEG GREEN - LED	EACH	2
4776	NAVIGATION LIGHT 180 DEG RED - LED	EACH	18
4780	FUSED CONNECTOR KIT	EACH	44
4795	CONDUIT - 2 INCH	LIN FT	6,60
4810	ELECTRICAL JUNCTION BOX	EACH	25
4820	TRENCHING AND BACKFILLING	LIN FT	700
4834	WIRE - NO. 6	LIN FT	37,46
4835	WIRE NO. 4	LIN FT	9,600
21565NN	WIRELESS LIGHTING MONITORING SYSTEM	LP SUM	1
21565NN	PULL BOX	EACH	5
	SOLAR POWERED BATTERY BACK-UP	LP SUM	1
	PATH DELINEATION LIGHTING		
4780	FUSED CONNECTOR KIT	EACH	180
4795	CONDUIT - 2 INCH	LIN FT	3,515
4810	ELECTRICAL JUNCTION BOX	EACH	45
4834	WIRE - NO. 6	LIN FT	20,68
4835	WIRE - NO. 4	LIN FT	5,900
24616EC	PATH DELINEATION LIGHTING	LP SUM	1
	ARCH LIGHTING		
4780	FUSED CONNECTOR KIT	EACH	72
4795	CONDUIT - 2 INCH	LIN FT	1,390
4810	ELECTRICAL JUNCTION BOX	EACH	18
4834	WIRE - NO. 6	LIN FT	6,956
4835	WIRE - NO. 4	LIN FT	4,900
24615	ARCH FEATURE LIGHTING	LP SUM	

⚠ ADDENDUM 1 - ENTIRE S	HEET	11/25/13
REVISION		DATE
DATE: NOVEMBER, 2013	CHECKED E	3 Y
DESIGNED BY: LAT		
DETAILED BY: LAT		

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG

ROUTE **US68** CROSSING KENTUCKY LAKE LIGHTING GENERAL SUMMARY

ITEM NUMBER

01–180.70

Over Kentucky Lake & Lake Barkley



DRAWING NO. **24686** 

REVISED 11/25/13

ITEM CODE	ITEM	UNIT	ТОТ
2.25.0			
2650	MAINTAIN & CONTROL TRAFFIC	LP SUM	1
3666 	UTILITY LINE HANGER FOR BRIDGE	EACH	15
4761	LIGHTING CONTROL EQUIPMENT	EACH	4
	NAVIGATION LIGHTING		
4775	NAVIGATION LIGHT 360 DEG GREEN - LED	EACH	2
4776	NAVIGATION LIGHT 180 DEG RED - LED	EACH	18
4780	FUSED CONNECTOR KIT	EACH	44
4795	CONDUIT - 2 INCH	LIN FT	6,60
4810	ELECTRICAL JUNCTION BOX	EACH	25
4820	TRENCHING AND BACKFILLING	LIN FT	700
4834	WIRE - NO. 6	LIN FT	37,4
4835	WIRE NO. 4	LIN FT	9,60
21565NN	WIRELESS LIGHTING MONITORING SYSTEM	LP SUM	1
21565NN	PULL BOX	EACH	5
	SOLAR POWERED BATTERY BACK-UP	LP SUM	1
	PATH DELINEATION LIGHTING		
4780	FUSED CONNECTOR KIT	EACH	180
4795	CONDUIT - 2 INCH	LIN FT	3,51
4810	ELECTRICAL JUNCTION BOX	EACH	45
4834	WIRE - NO. 6	LIN FT	20,6
4835	WIRE - NO. 4	LIN FT	5,90
24616EC	PATH DELINEATION LIGHTING	LP SUM	1
	A D C         T C     T T     C		
4780	ARCH LIGHTING  FUSED CONNECTOR KIT	EACH	72
4795	CONDUIT - 2 INCH	LIN FT	1,39
4810	ELECTRICAL JUNCTION BOX	EACH	18
4834	WIRE - NO. 6	LIN FT	6,95
4835	WIRE - NO. 4	LIN FT	4,90
1000	ARCH FEATURE LIGHTING	LP SUM	7, 30

(

⚠ ADDENDUM 1 - ENTIRE SHEET		11/25/13
REVISION		DATE
DATE: NOVEMBER, 2013	CHECKED E	3 Y
DESIGNED BY: LAT		
DETAILED BY: LAT		
A 141	<b>6</b> 717 4 4	

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

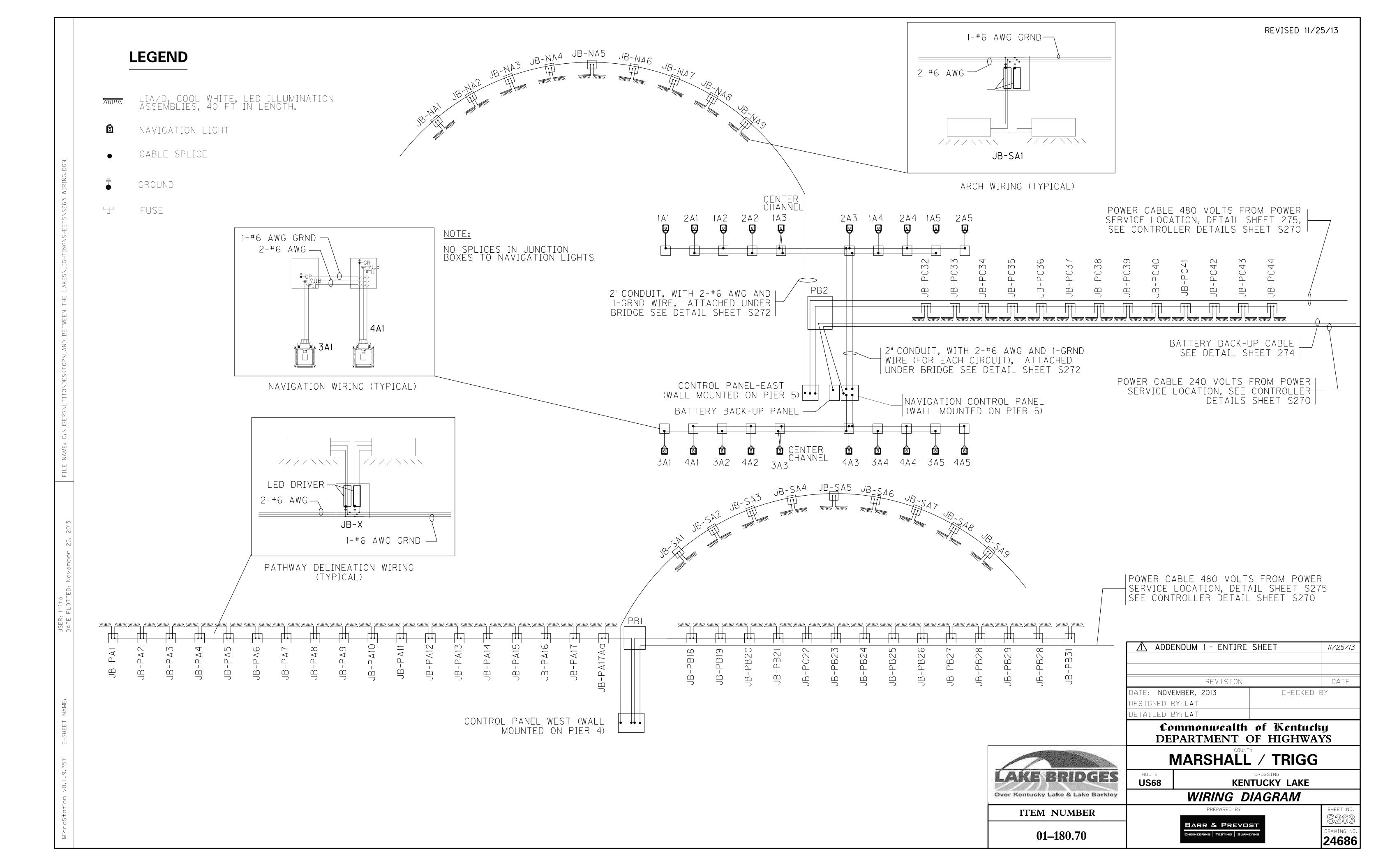
MARSHALL / TRIGG

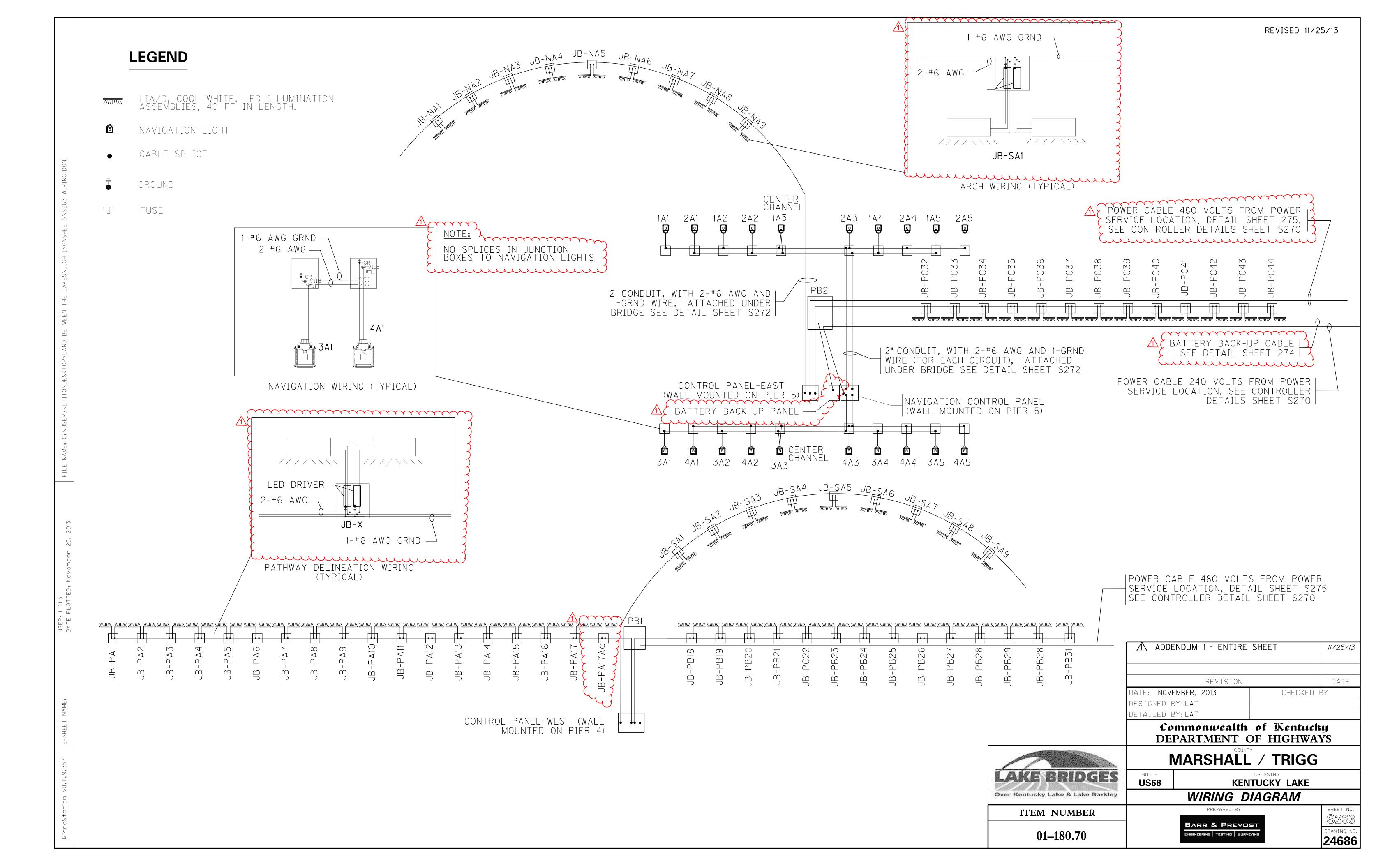
ROUTE CROSSING

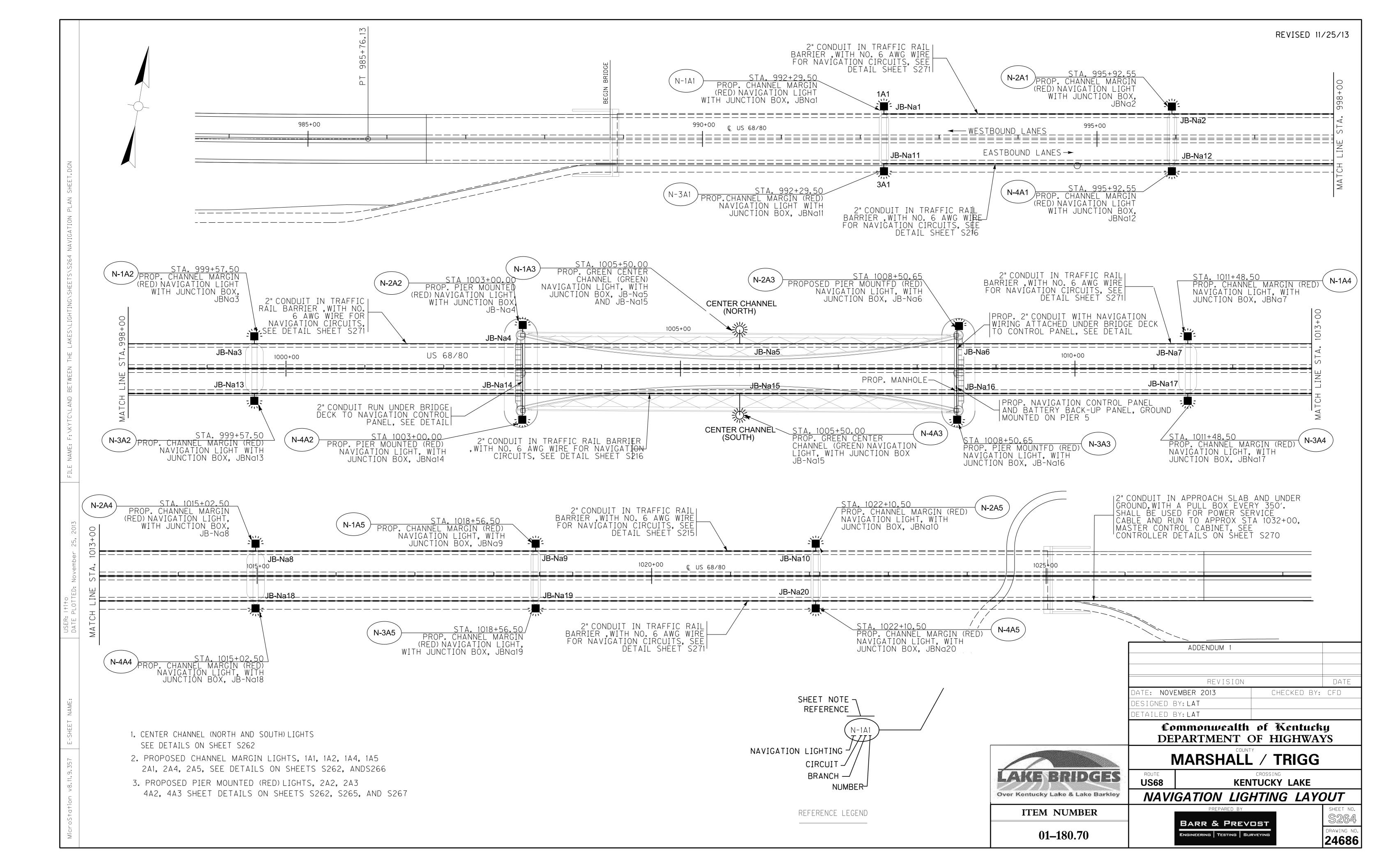
US68 KENTUCKY LAKE

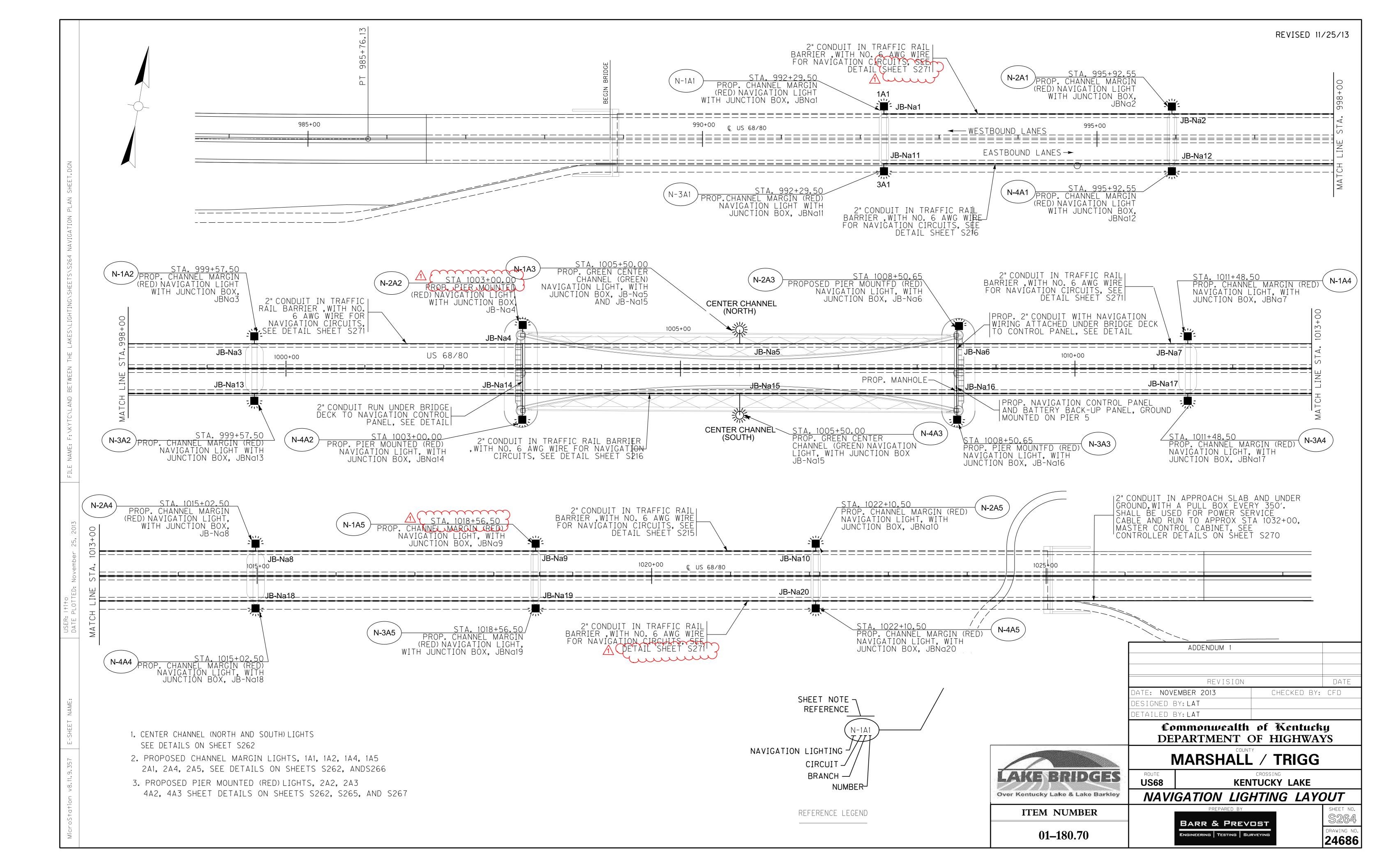
LIGHTING GENERAL SUMMARY

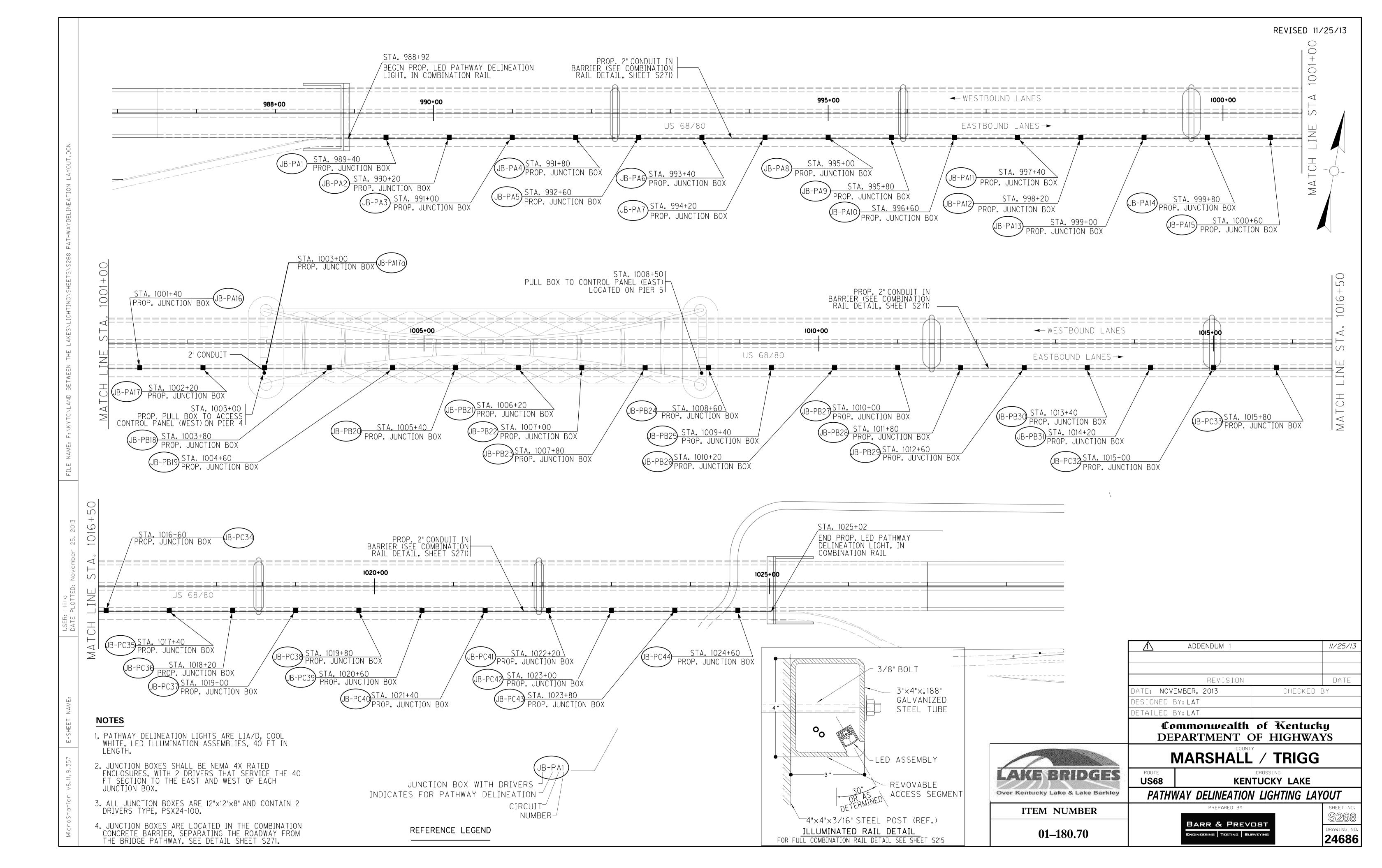
ITEM NUMBER

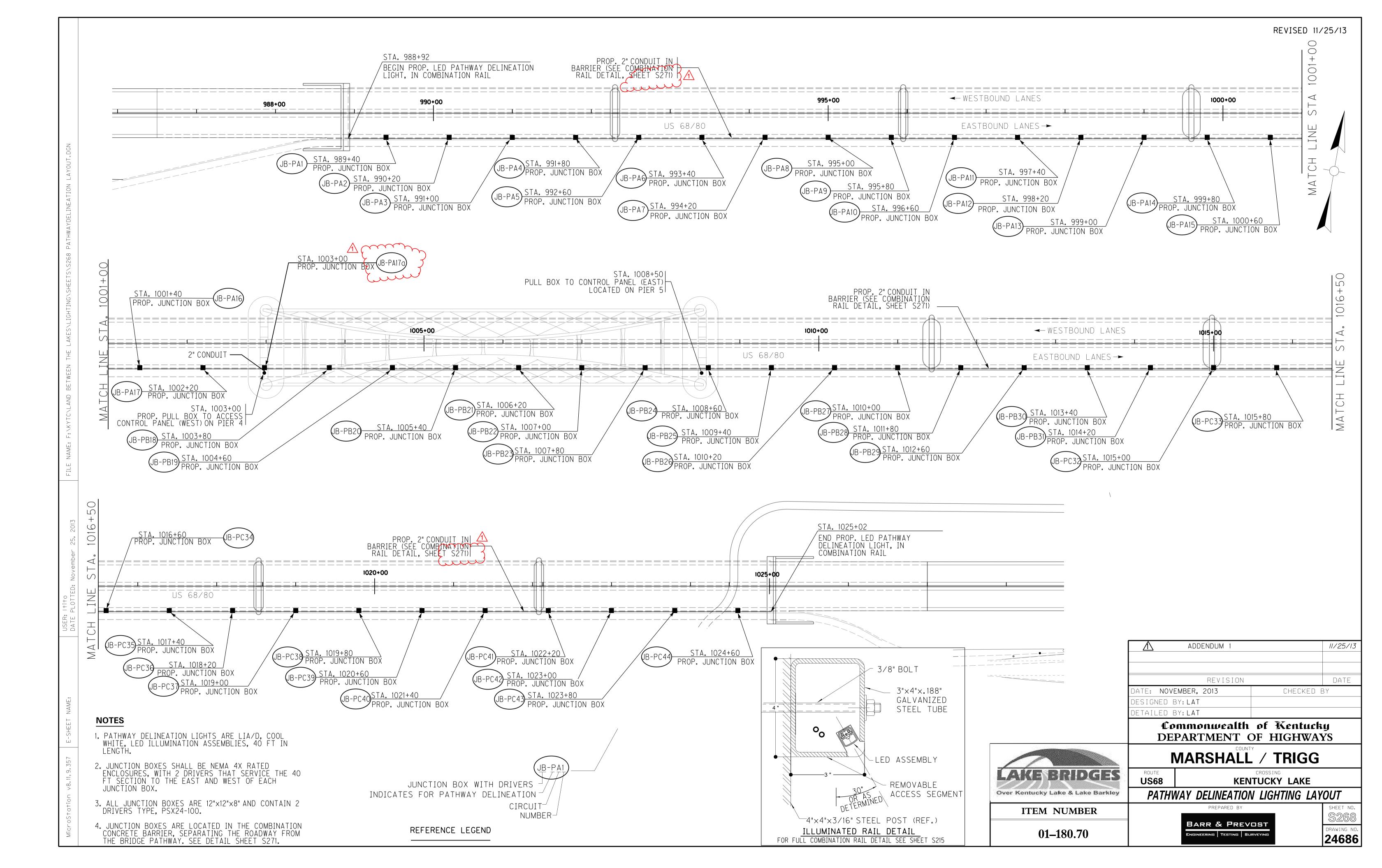

Over Kentucky Lake & Lake Barkley


01–180.70


BARR & PREVOST


ENGINEERING | TESTING | SURVEYING


\$262 DRAWING NO. **24686** 














AUTANI #MVP2407-PL-MCB-XX LIGHTING

* STAINLESS STEEL TYPE 3R/4/4X/5/12

* (12) 240VAC 20AMP SWITCHED CIRCUITS

* MAIN AND BRANCH CIRCUIT CURRENT

* MAIN AND BRANCH CIRCUIT VOLTAGE

* LIGHTING ON AND OFF VIA DAYLIGHT

CONTROL PANEL WITH MAIN CIRCUIT

BREAKER, INCLUDING:

ENCLOSURE

MONITORING

MONITORING

SENSOR

* PHASE LOSS MONITORING

- * STAINLESS STEEL TYPE 3R/4/4X/5/12 ENCLOSURE
- * (4)120VAC 20AMP CONSTANT CIRCUITS * MAIN AND BRANCH CIRCUIT CURRENT
- MONITORING * MAIN AND BRANCH CIRCUIT VOLTAGE MONITORING
- * PHASE LOSS MONITORING

DAYLIGHT SENSOR TO CONTROL ARCH & COMBINATION RAIL LIGHTING VIA LIGHTING CONTROL PANEL (ON AT DUSK/ OFF AT DAWN) autaniNET WIRELESS NETWORK FOR CIRCUIT MONITORING TO AUTANI MANAGER WITH ENERGYCENTERSOFTWARE (8) 240VAC 2W+GND 20AMP SWITCHED AND EAST LIGHTING MONITORED CIRCUITS FOR RAIL LIGHTING CONTROL (600W / (6) 100W DRIVER MAX PER CIRCUIT ). PANEL (4) 240VAC 2W+GND 20AMP SWITCHED AND MONITORED CIRCUITS FOR ARCH LIGHTING (600W / (6) 100W DRIVER MAX PER CIRCUIT ). 240/480VAC

AUTANI #MVP2407-PL-MCB-XX LIGHTING CONTROL PANEL WITH MAIN CIRCUIT BREAKER, INCLUDING: * STAINLESS STEEL TYPE 3R/4/4X/5/12

ENCLOSURE WEST * (8) 240VAC 20AMP SWITCHED CIRCUITS LIGHTING * MAIN AND BRANCH CIRCUIT CURRENT CONTROL MONITORING PANEL

* MAIN AND BRANCH CIRCUIT VOLTAGE MONITORING

* PHASE LOSS MONITORING

ARCH & HANDRAIL LIGHTING

VIA LIGHTING CONTROL PANEL

(ON AT DUSK/ OFF AT DAWN)

* LIGHTING ON AND OFF VIA DAYLIGHT SENSOR

> 240/480VAC FEED WEST LIGHTING CONTROL PANEL (COMBINATION RAIL LIGHTING AND SOUTH ARCH LIGHTING)

ETHERNET NETWORK

AUTANI AFC WIRELESSLY NETWORKED FIXTURE MONITOR WITH POWER SUPPLY. IN WEATHER-PROOF ENCLOSURE. AUTANI #02-01-0009-25 MONITORED CONDITIONS SHALL INCLUDE: * FIXTURE CURRENT

* FAILURE OF PRIMARY LAMP AS INDICATED BY DUAL

120VAC 2-WIRE + GND CIRCUIT FROM BATTERY BACKUP (TYPICAL) LAMP NAVIGATION LIGHTING FIXTURE. NAVIGATION TO NEXT NAVIGATION LIGHT BATTERY LIGHTING BACKUP PANEL FURNISH & INSTALL (1) FIXTURE MONITOR PER NAVIGATION LIGHTING NAVIGATION LIGHT #1 (TYPICAL OF (6) PER CIRCUIT) 120/ 208VAC

MESH NETWORK CONNECTION TO DEVICES TCP/IP NETWORK CONNECTION 120VAC 50/60HZ TO BAS SYSTEM AND CAMPUS ← 1 AMP MAX

DAYLIGHT SENSOR TO CONTROL

AUTANI MANAGER WITH

ENERGYCENTERSOFTWARE

CIRCUIT).

autaniNET WIRELESS NETWORK

(8) 240VAC 2W+GND 20AMP

SWITCHED AND MONITORED

CIRCUITS FOR RAIL LIGHTING

autaniNET WIRELESS

(600W/(6)100W DRIVER MAX PER

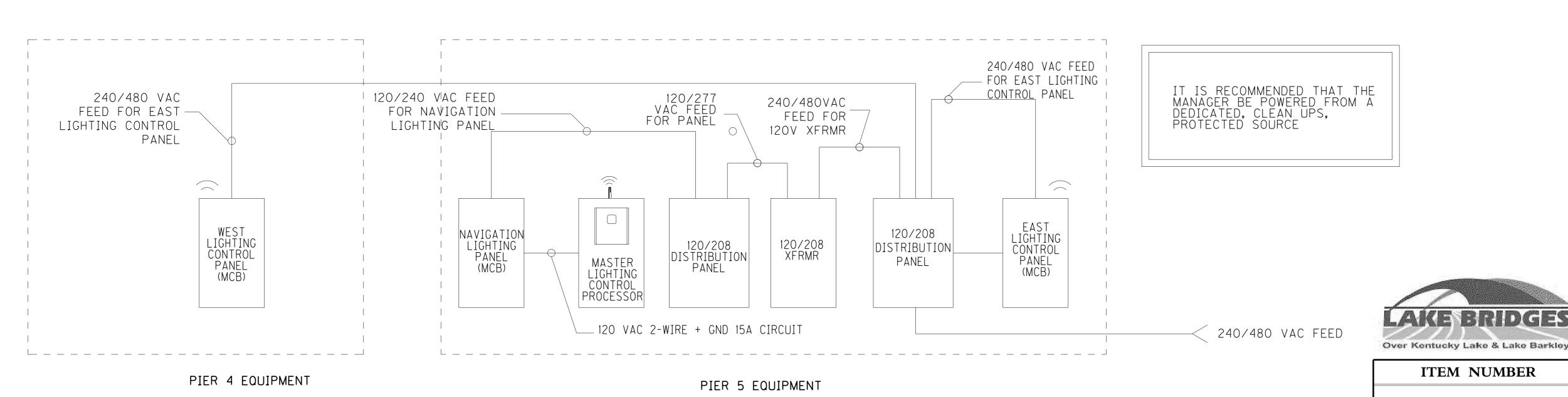
FOR CIRCUIT MONITORING TO

AUTANI MANAGER APPLIANCE, INCLUDING: #A08-01-0147-02 ENERGYCENTER+ SOFTWARE #A08-01-0150-06 CONNECT BAS INTERFACE SOFTWARE A08-01-0150-07 ENERGYCENTER PRO

THE AUTANI MANAGER SHALL BE ENCLOSED IN AN APPROPRIATE STAINLESS STEEL ENCLOSURE TYPE 3R/4/X/5/12 TO MATCH THE LIGHTING CONTROL PANELS. TRANSCEIVER SHALL BE MOUNTED IN AN EXTERIOR, WEATHERPROOF ENCLOSURE.

MASTER LIGHTING CONTROL PROCESSOR

NAVIGATION LIGHTING PANEL & FIXTURE MONITORS


FEED

FEED

EAST LIGHTING CONTROL PANEL

ARCH LIGHTING)

(COMBINATION RAIL LIGHTING AND NORTH



ADDENDUM 1 11/25/13 DATE REVISION ATE: NOVEMBER, 2013 CHECKED BY DESIGNED BY: LAT DETAILED BY: LAT Commonwealth of Kentucky

DEPARTMENT OF HIGHWAYS

US 68 KENTUCKY LAKE

CONTROLLER DETAILS

ITEM NUMBER 01–180.70

* MAIN AND BRANCH CIRCUIT CURRENT

* MAIN AND BRANCH CIRCUIT VOLTAGE

* PHASE LOSS

FIXTURE:

ALERTS:

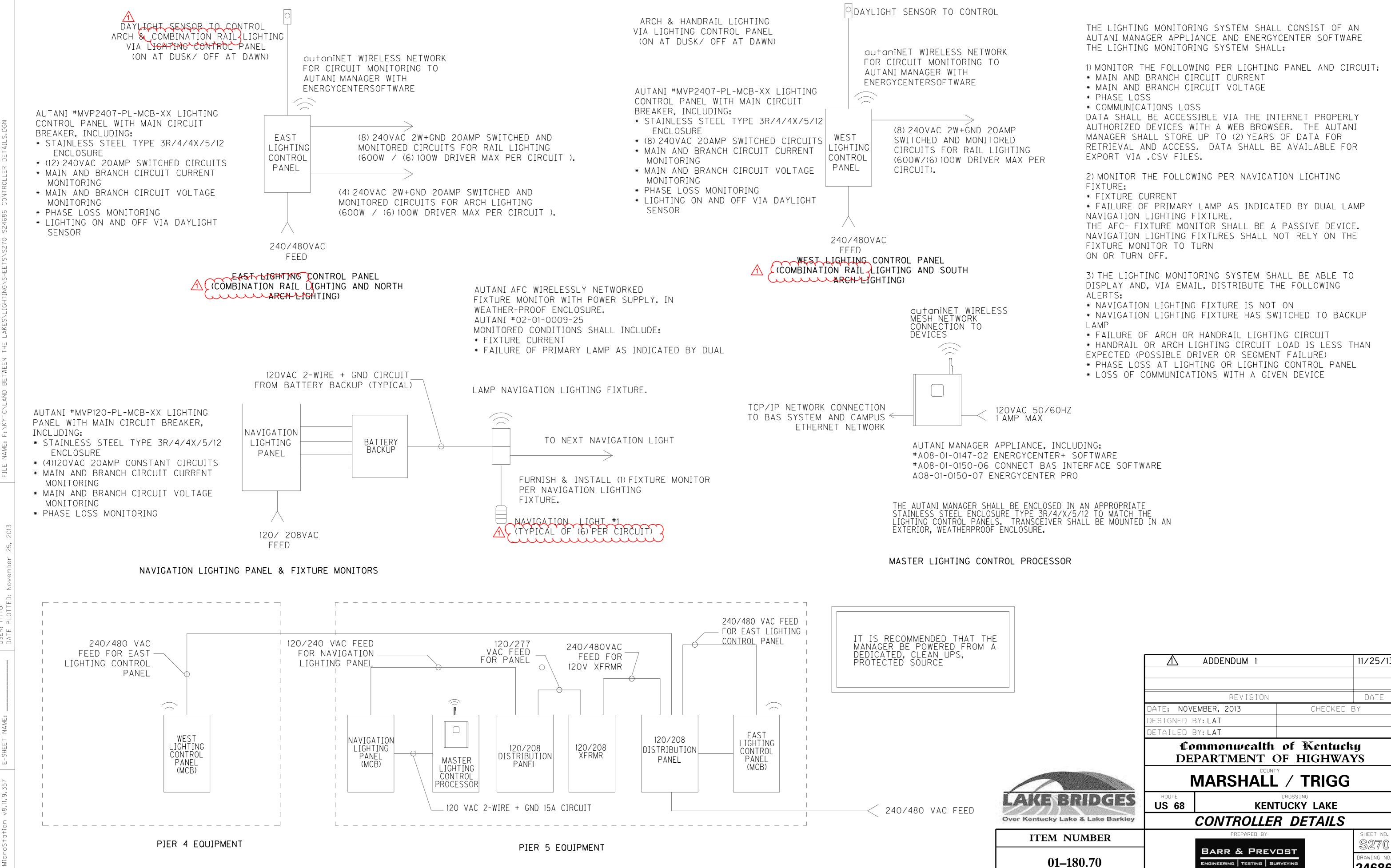
* COMMUNICATIONS LOSS

EXPORT VIA .CSV FILES.

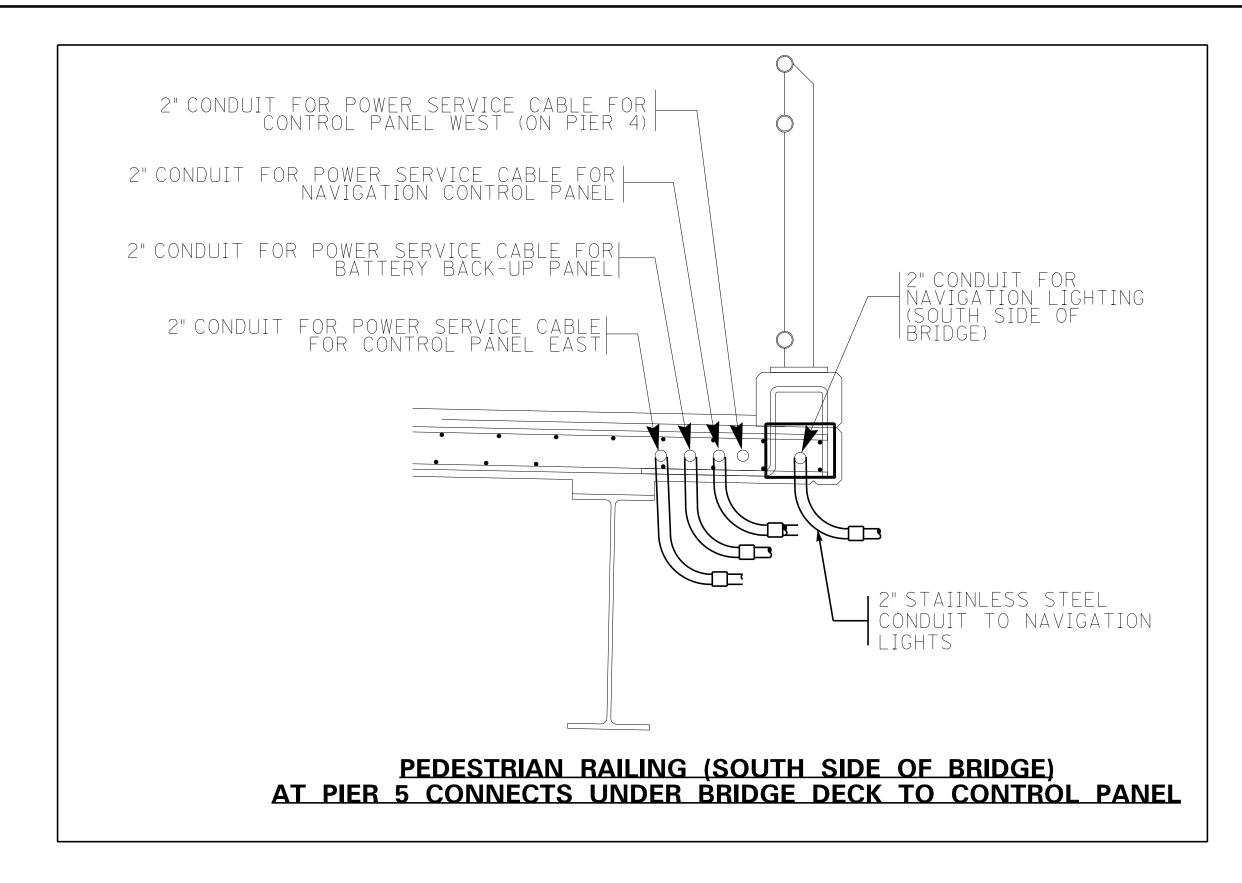
NAVIGATION LIGHTING FIXTURE.

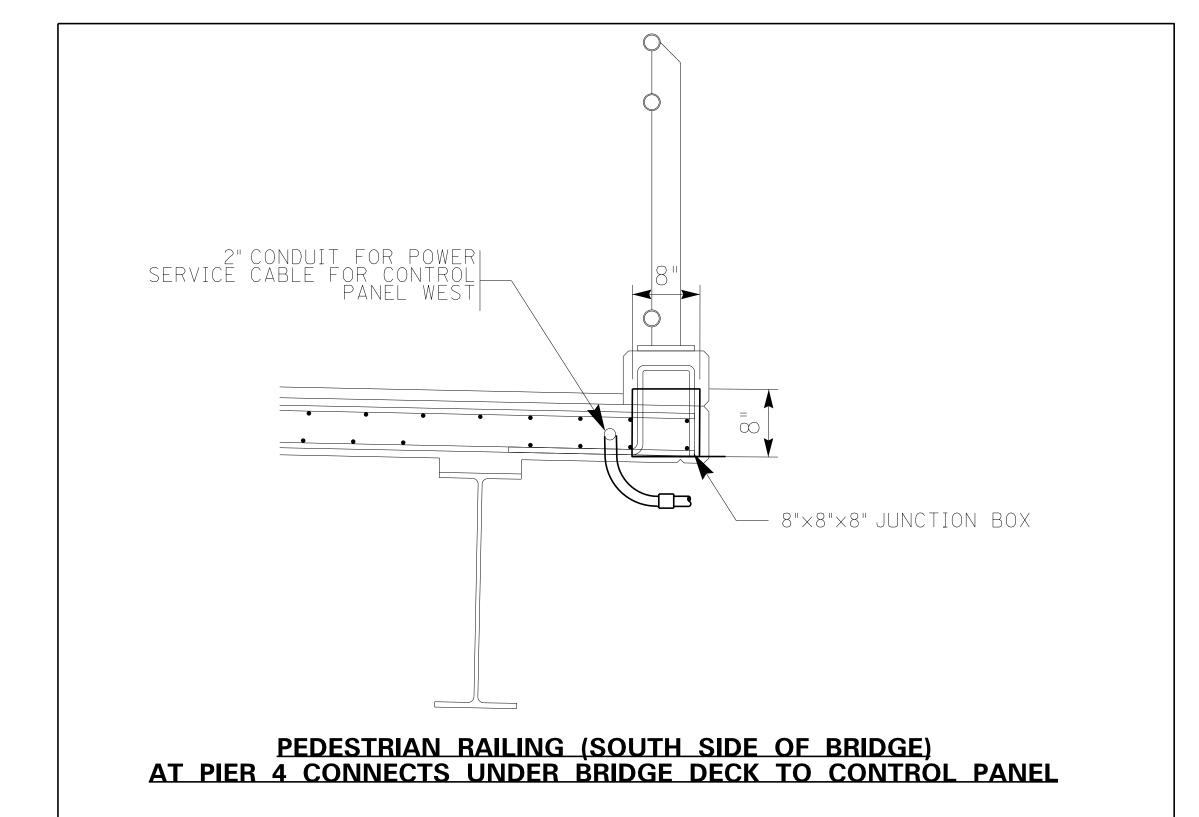
FIXTURE MONITOR TO TURN

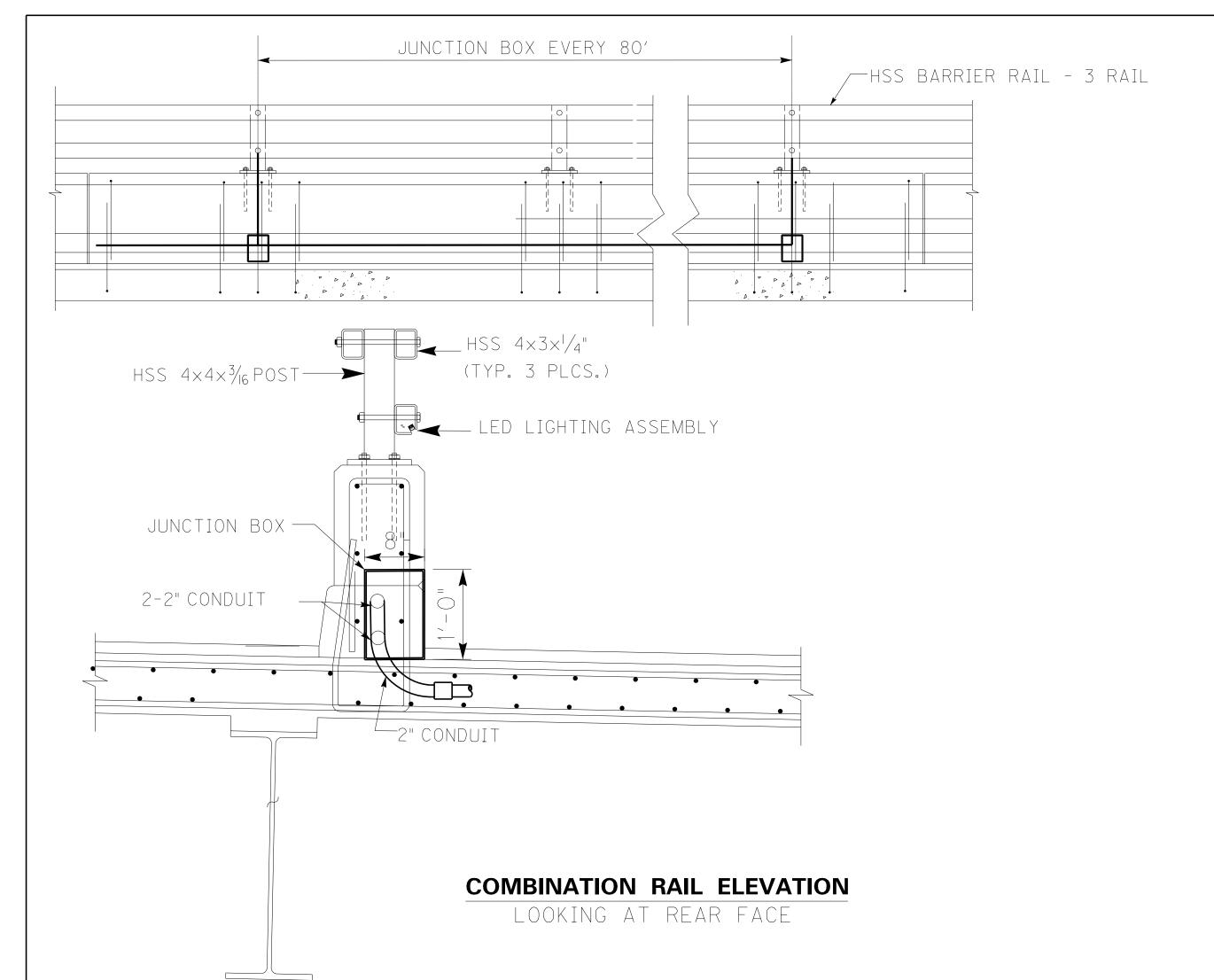
* FIXTURE CURRENT

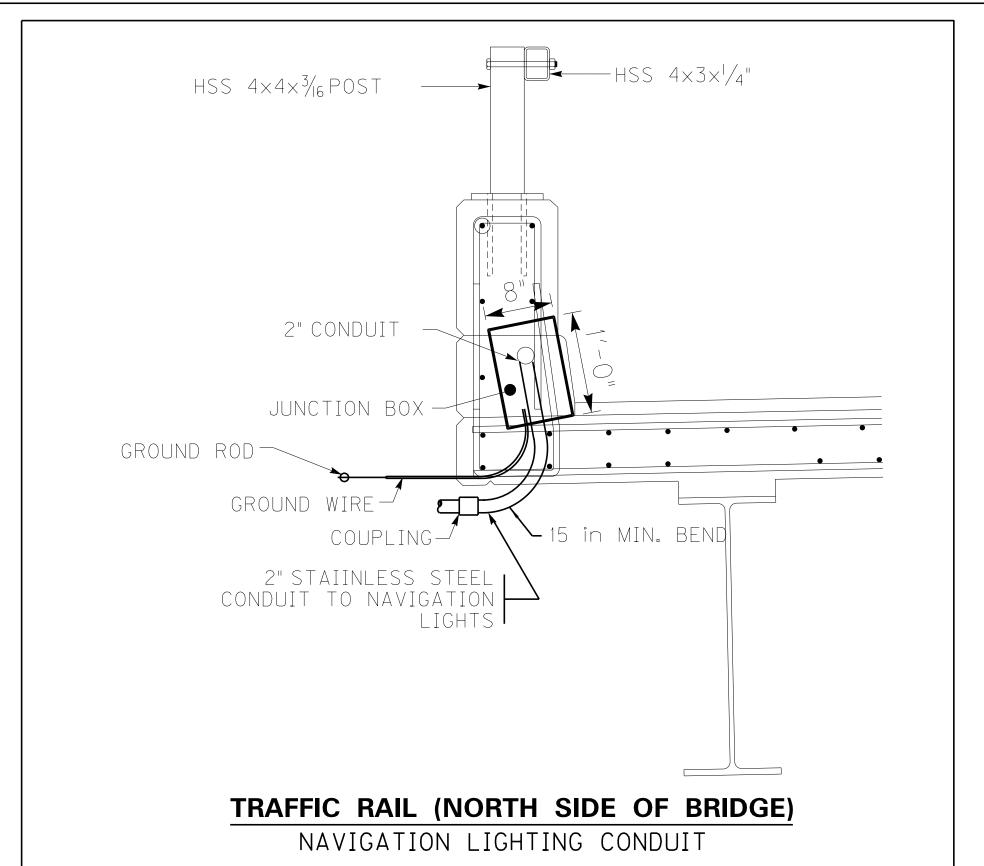

ON OR TURN OFF.

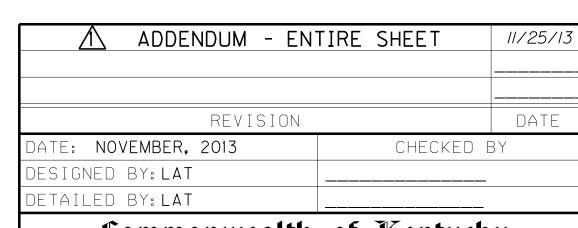
ENGINEERING TESTING SURVEYING


\$270 RAWING N 24686


MARSHALL / TRIGG


BARR & PREVOST





RAWING N 24686











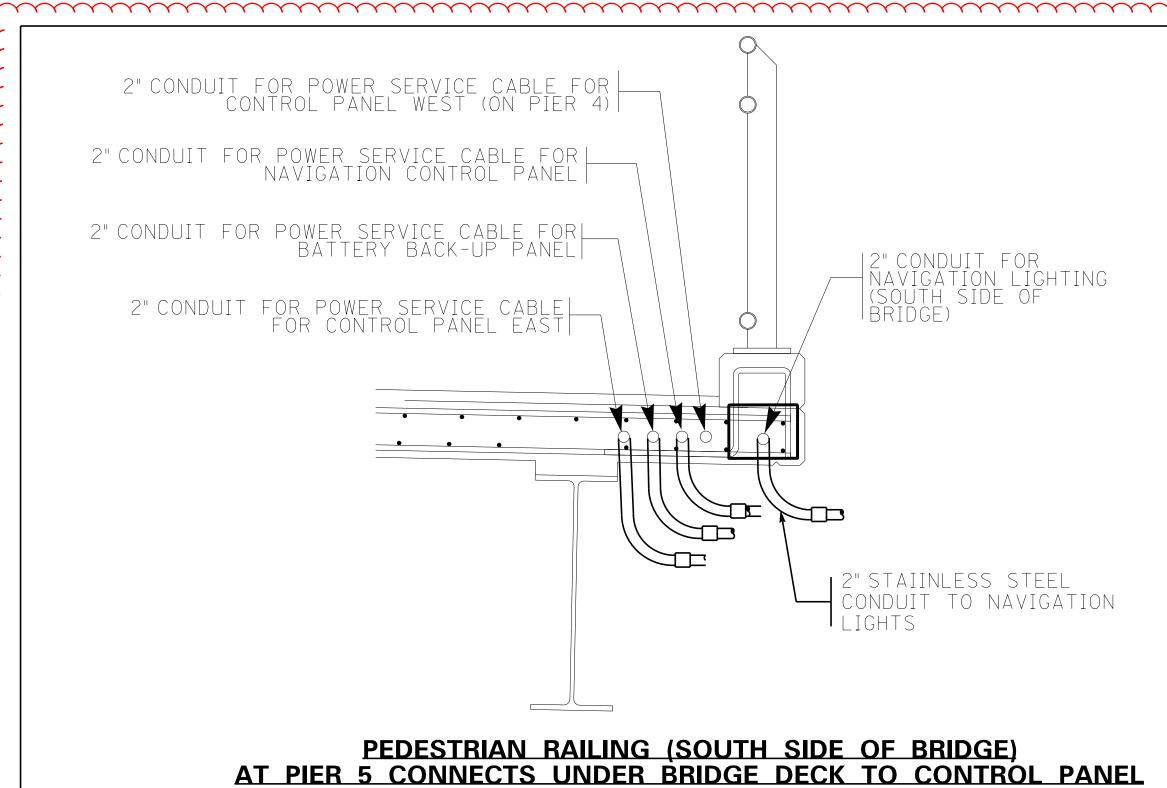
Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG

ROUTE **US68** CROSSING KENTUCKY LAKE

LIGHTING DETAILS

AKE BRIDGES


Over Kentucky Lake & Lake Barkley

ITEM NUMBER

<u>01–180.70</u>

BARR & PREVOST ENGINEERING TESTING SURVEYING

24686



JUNCTION BOX EVERY 80'

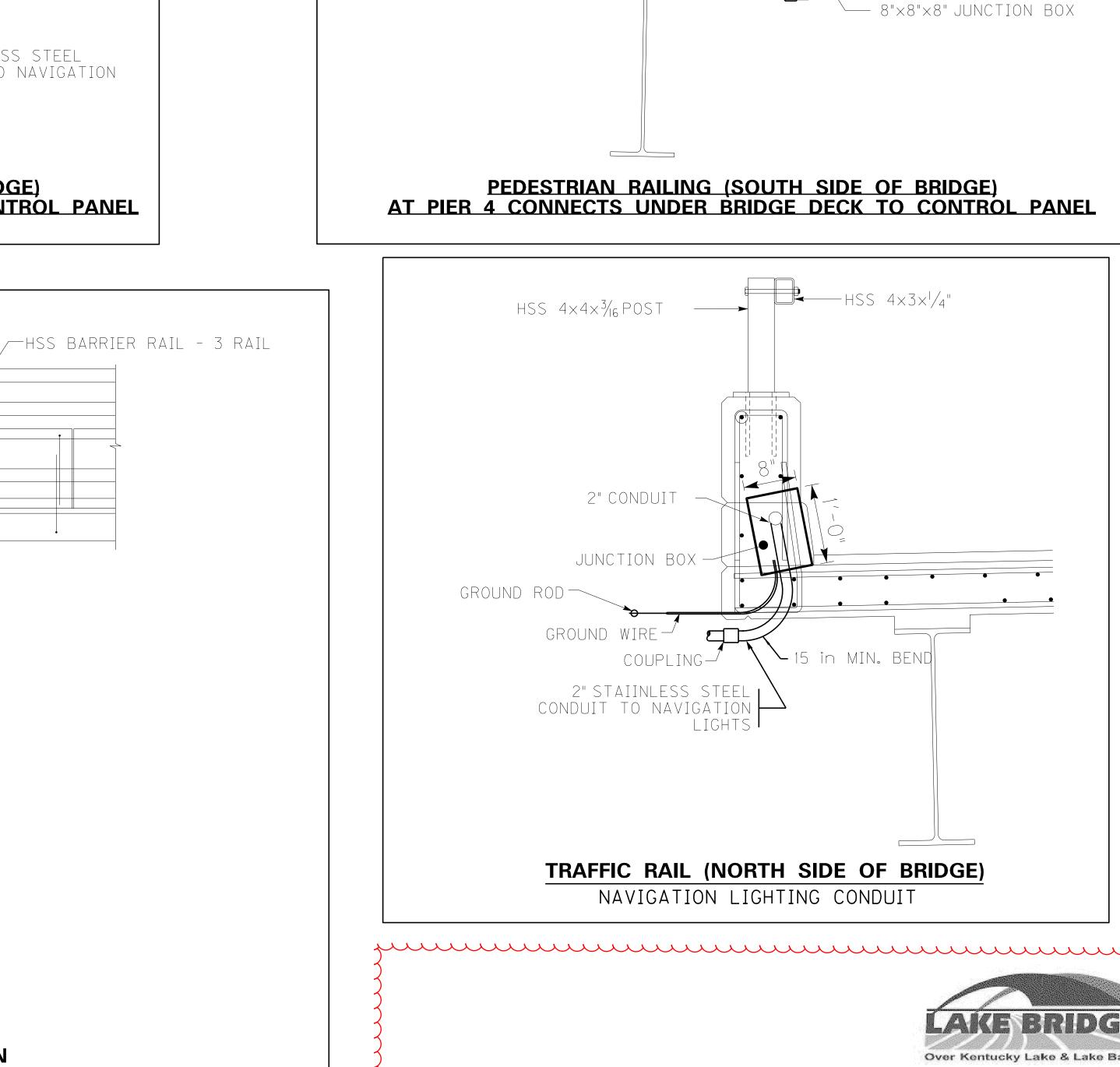
 $_{\text{HSS}} 4 \times 3 \times \frac{1}{4}$ "

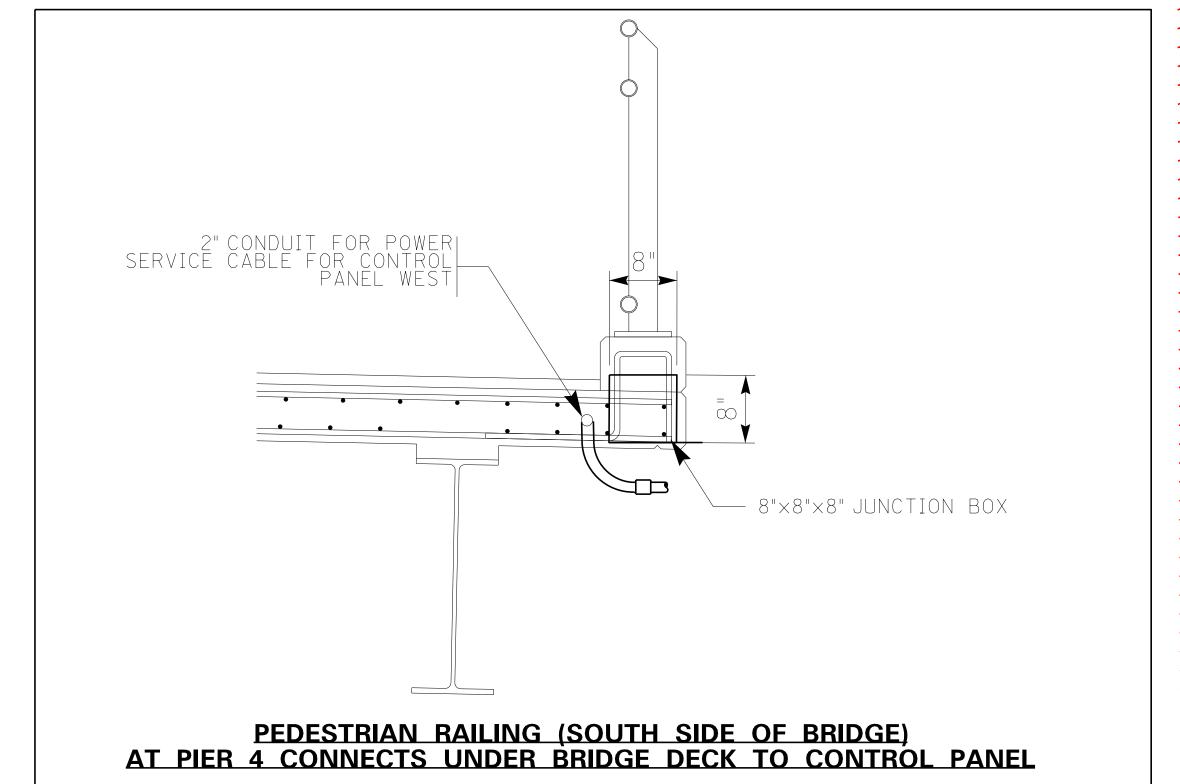
___2" CONDUIT

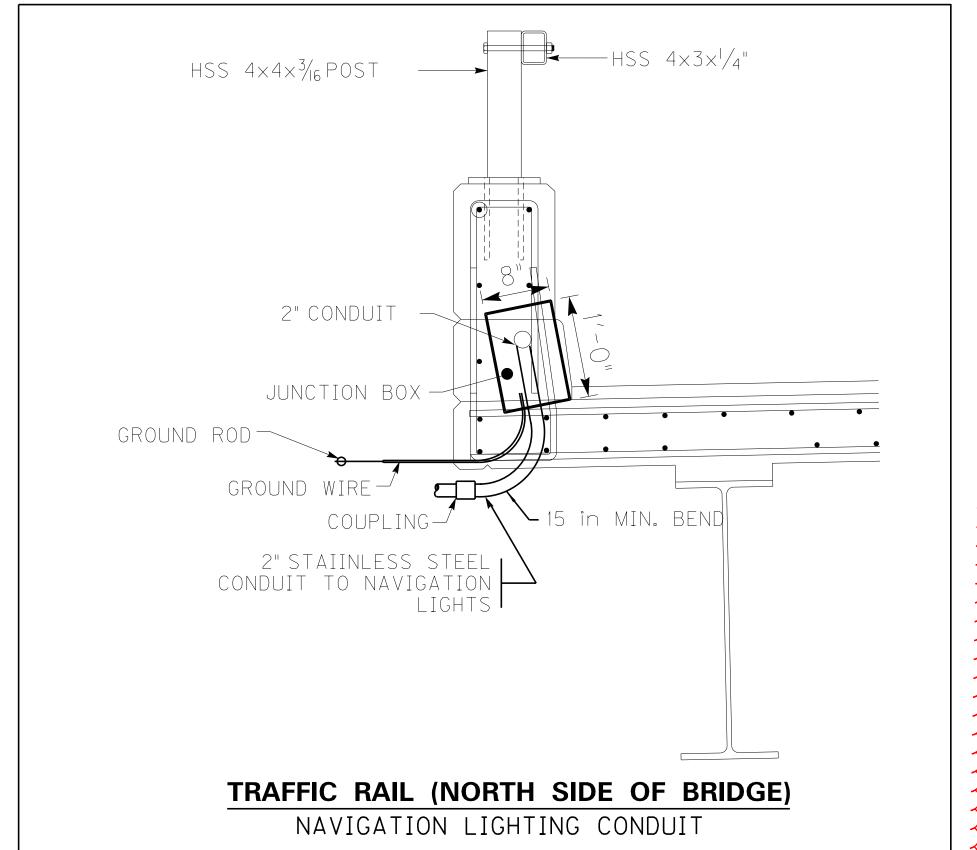
(TYP. 3 PLCS.)

___LED_LIGHTING_ASSEMBLY

**COMBINATION RAIL ELEVATION** 


LOOKING AT REAR FACE


Ш


HSS  $4\times4\times\frac{3}{16}$  POST —

JUNCTION BOX —

2-2" CONDUIT







⚠ ADDENDUM - E	NTIRE SHEET	11/25/13
REVISION		DATE
DATE: NOVEMBER, 2013	CHECKED (	3 Y
DESIGNED BY: LAT		
DETAILED BY: LAT		
<b>€</b> ommonuealt	h of Kontuck	.11

سسر

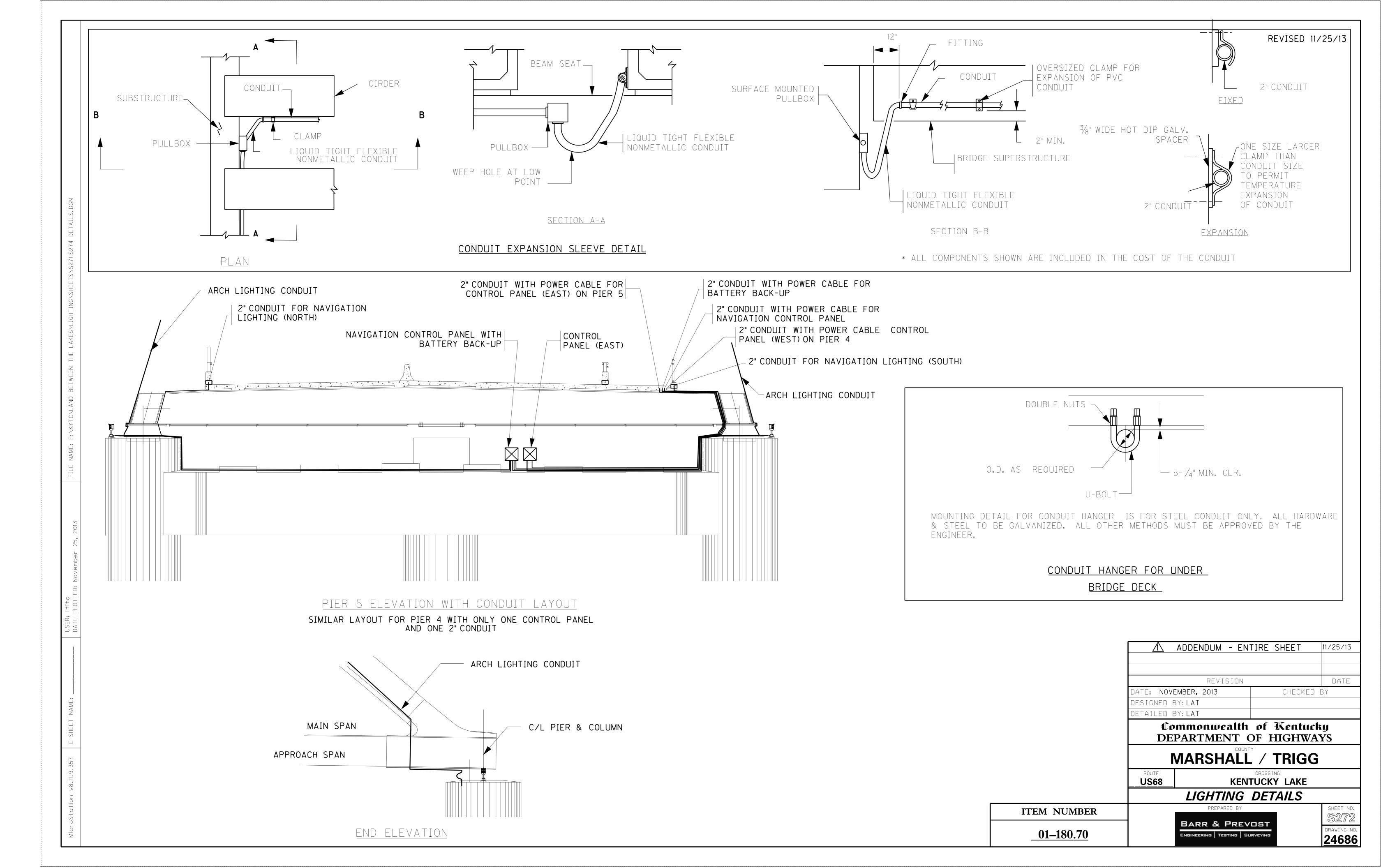
AKE BRIDGES

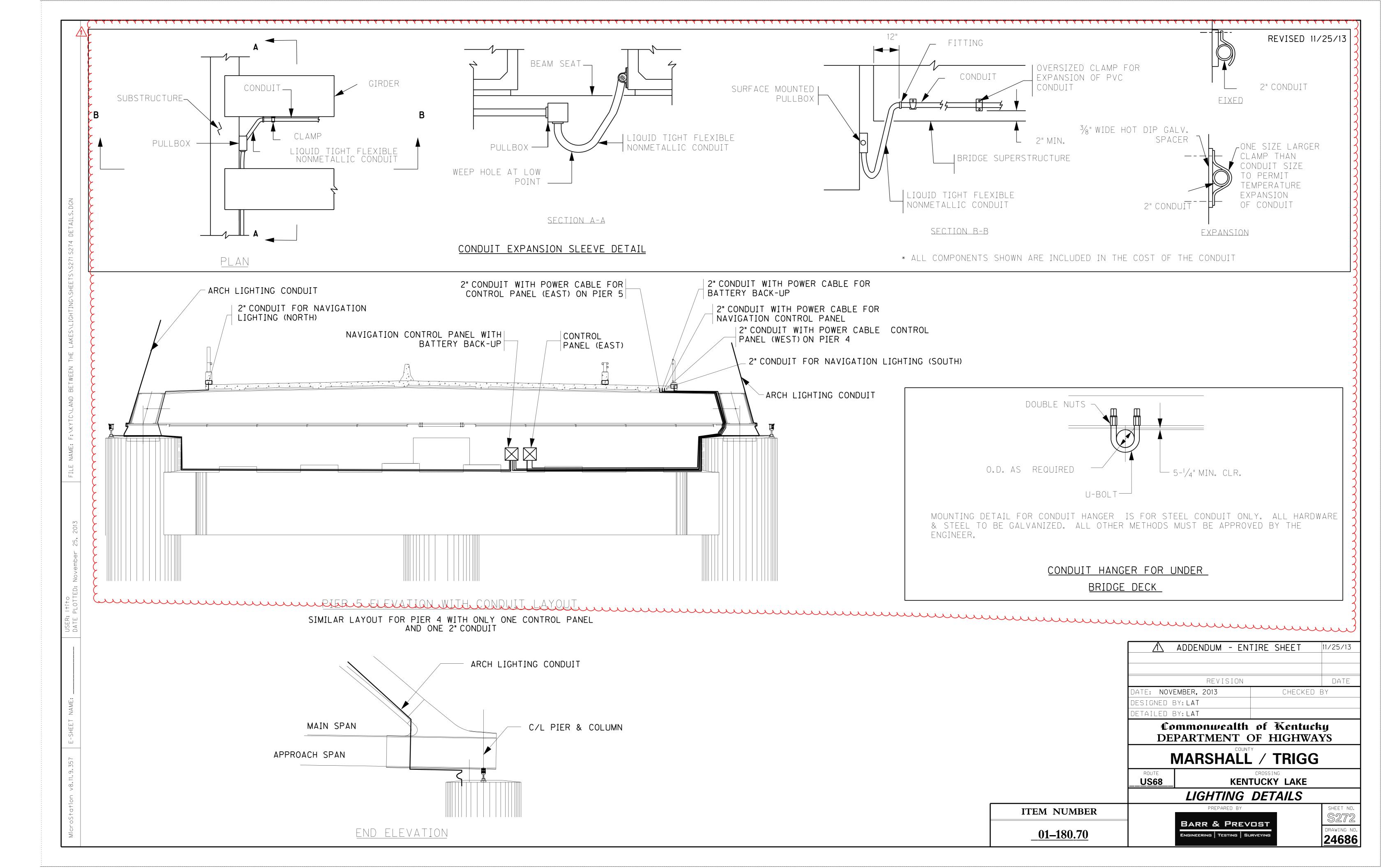
Over Kentucky Lake & Lake Barkley

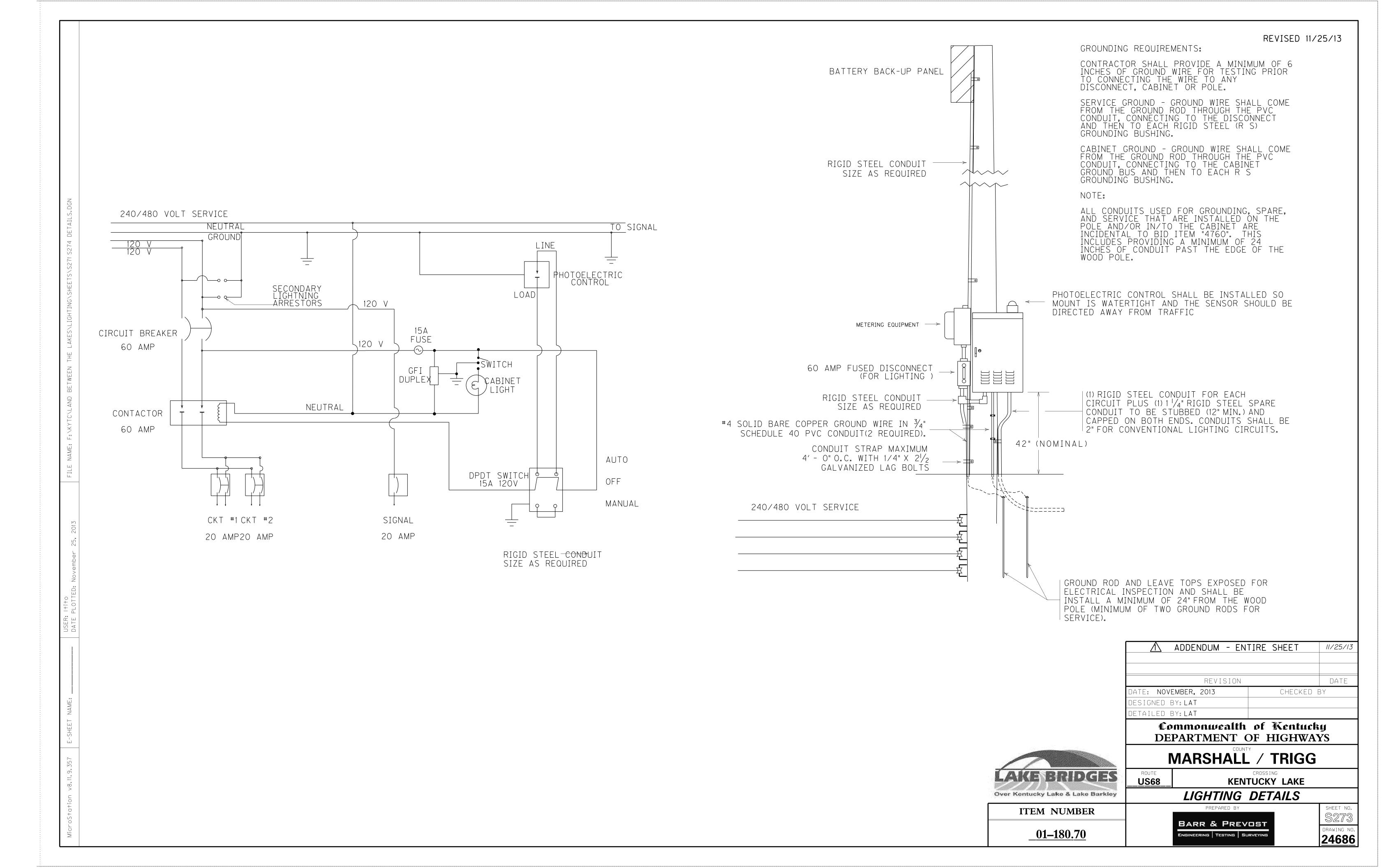
ITEM NUMBER

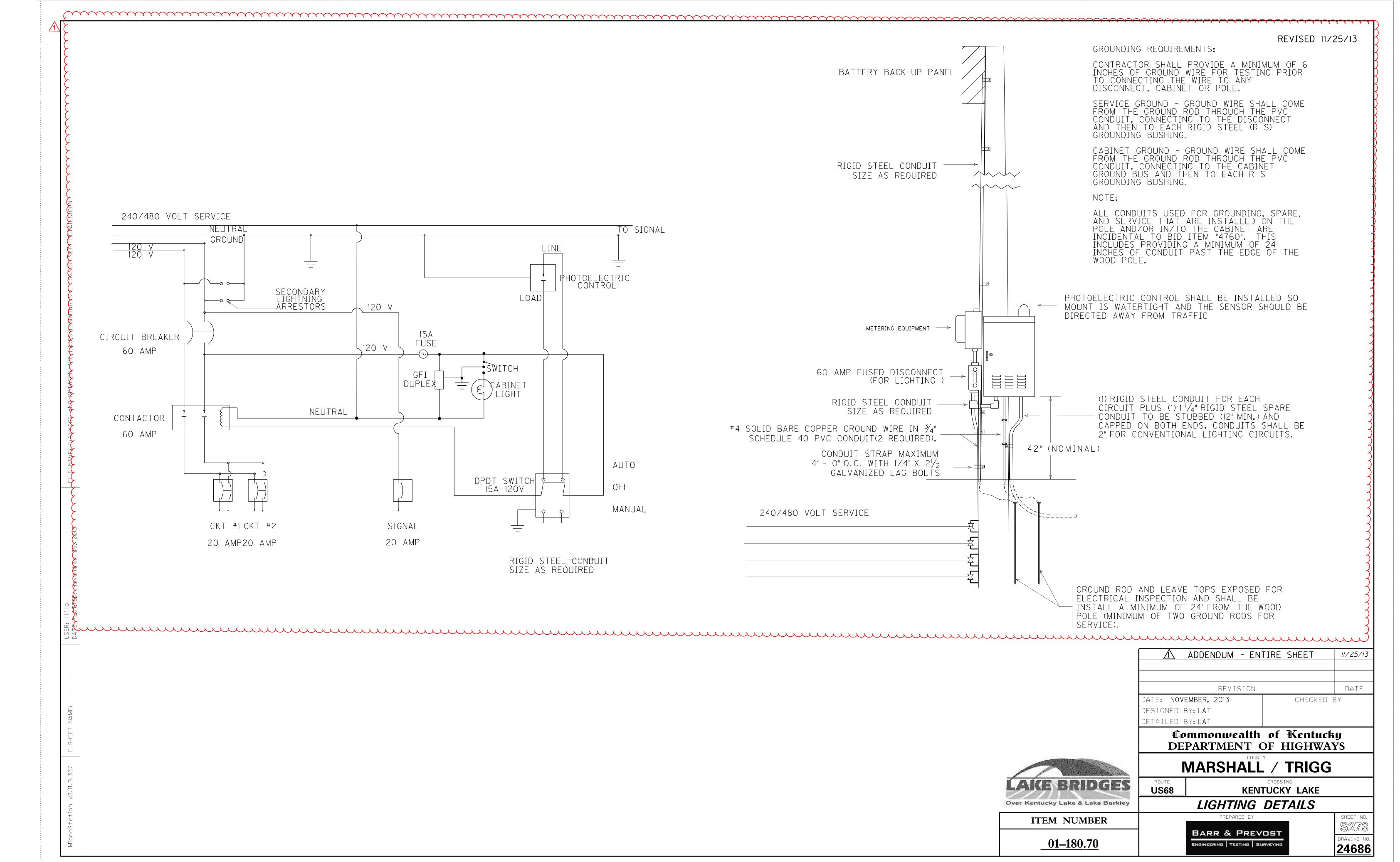
01–180.70

Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

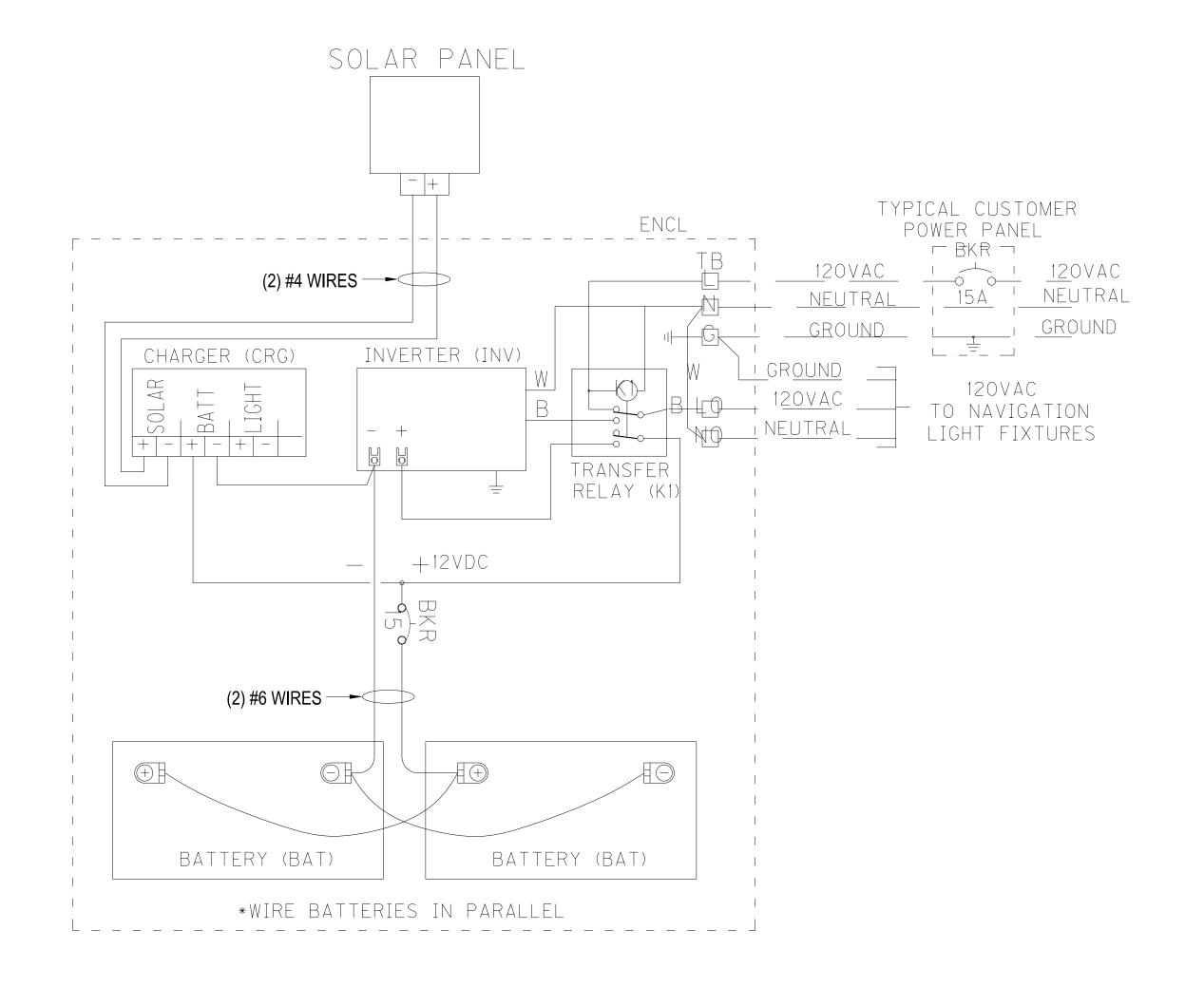

MARSHALL / TRIGG

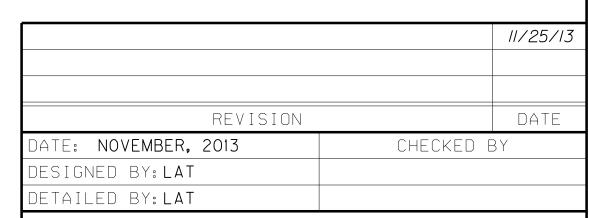

ROUTE **US68** CROSSING
KENTUCKY LAKE


LIGHTING DETAILS


BARR & PREVOST ENGINEERING TESTING SURVEYING


<u>24686</u>







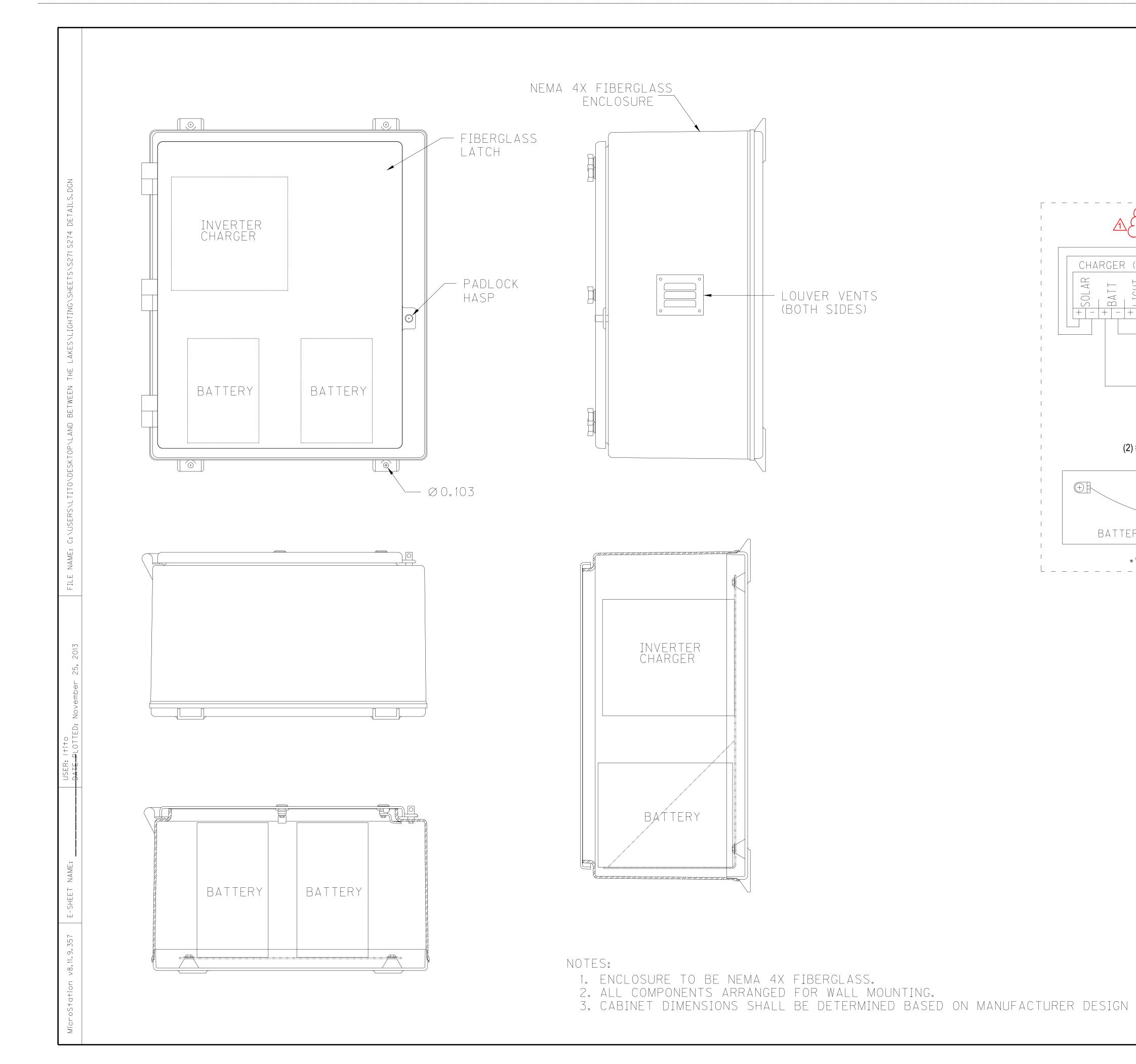


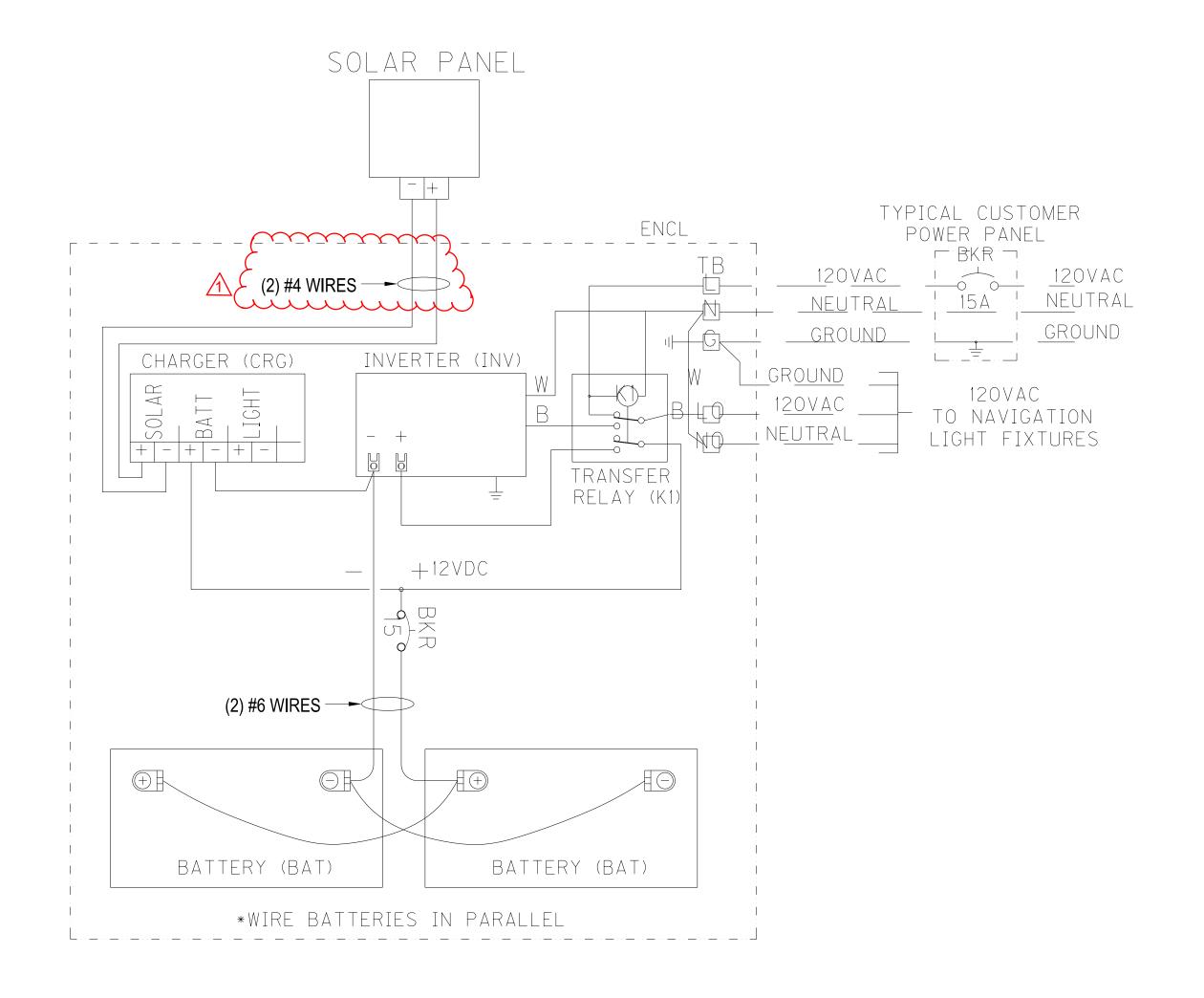


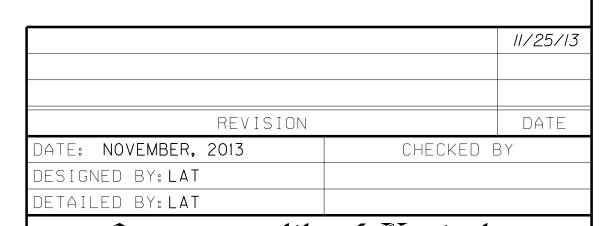



Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG


CROSSING KENTUCKY LAKE ROUTE US68


ITEM NUMBER <u>01–180.70</u>


Over Kentucky Lake & Lake Barkley

SOLAR POWERED BATTERY BACKUP DETAILS BARR & PREVOST

S274 ENGINEERING TESTING SURVEYING <u>24686</u>

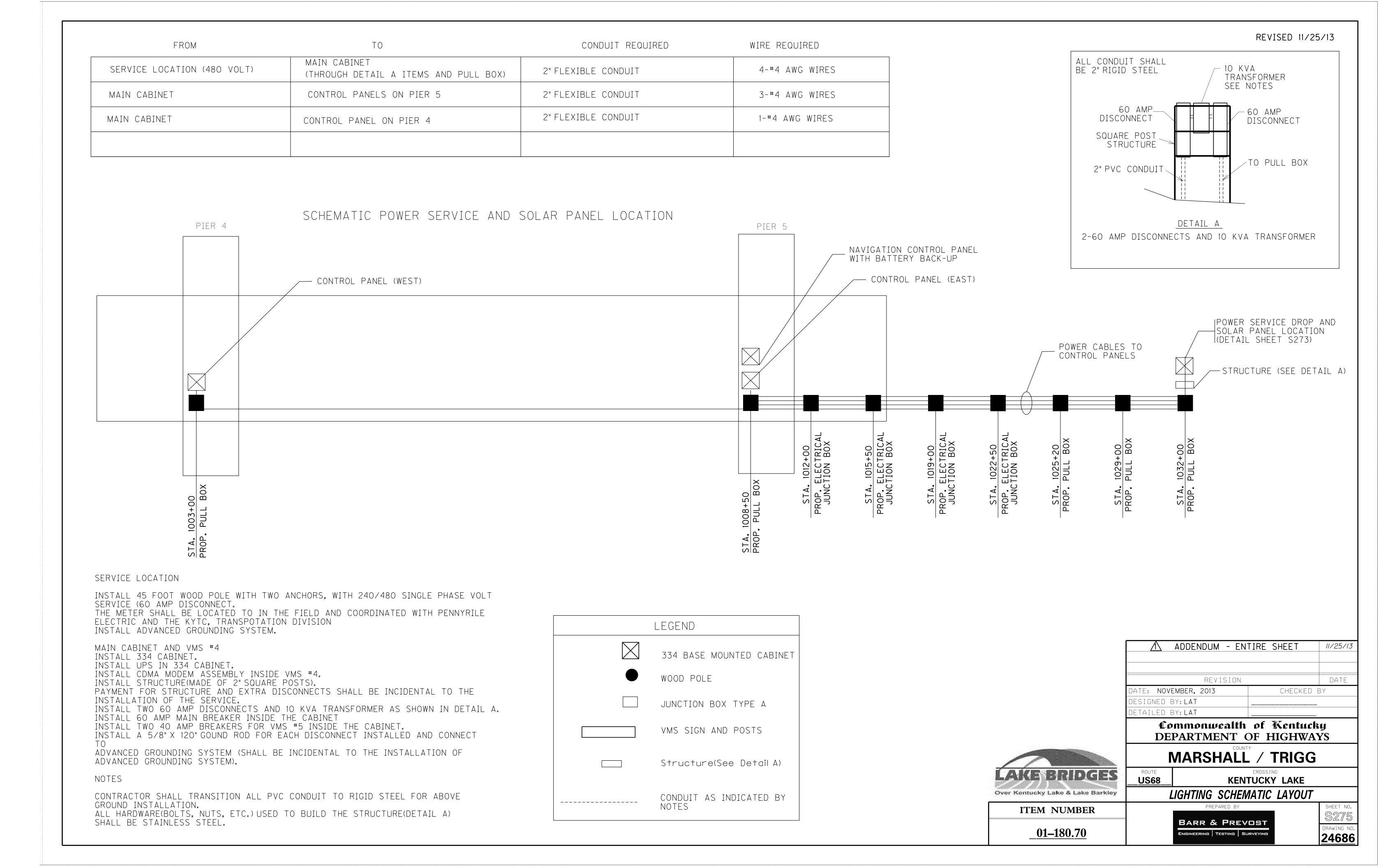


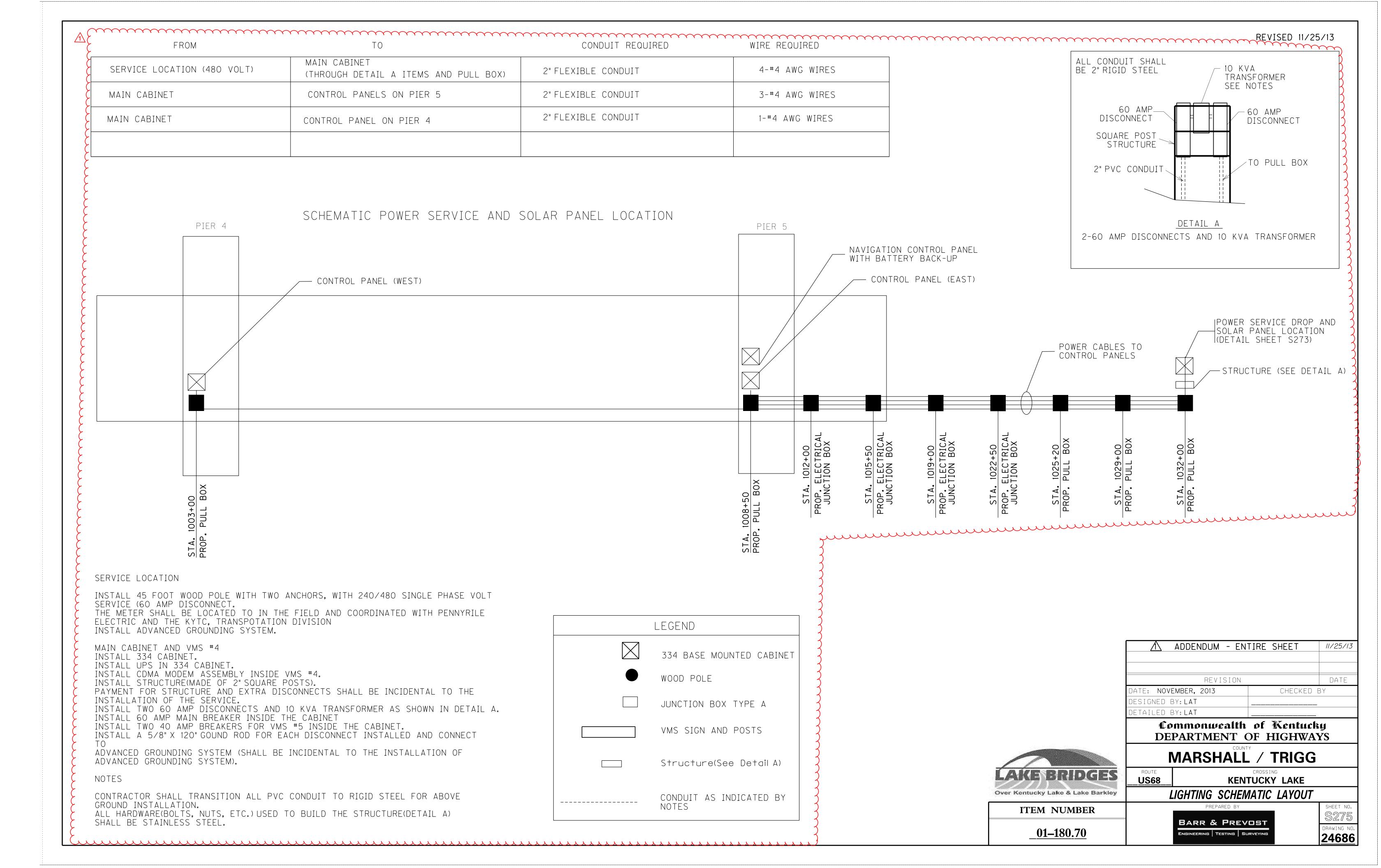




Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS

MARSHALL / TRIGG


CROSSING KENTUCKY LAKE ROUTE US68 SOLAR POWERED BATTERY BACKUP DETAILS


ITEM NUMBER <u>01–180.70</u>

Over Kentucky Lake & Lake Barkley

BARR & PREVOST ENGINEERING TESTING SURVEYING

S274 <u>24686</u>





AND MINIMIZED. BEST MANAGEMENT PRACTICES FOR WATER POLLUTION CONTROL SHALL BE INCORPORATED INTO PROJECT DESIGN PLANS ACCORDING TO SECTION 213.03.01 OF THE KENTUCKY STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, CURRENT EDITION.

- 4) HEAVY EQUIPMENT (BULLDOZERS, CRANES, BACKHOES, DRAG LINES, ETC.), IF REQUIRED FOR THIS PROJECT, SHOULD NOT BE USED OR OPERATED WITHIN THE STREAM CHANNEL. IN THOSE INSTANCES WHERE SUCH IN-STREAM WORK IS UNAVOIDABLE, THEN IT SHALL BE PERFORMED IN SUCH A MANNER AND DURATION AS TO MINIMIZE RE-SUSPENSION OF SEDIMENTS AND DISTURBANCE TO SUBSTRATES AND BANK OR RIPARIAN VEGETATION.
- 5) SPOIL MATERIALS FROM THE WATERCOURSE OF ON-SHORE OPERATIONS, INCLUDING SLUDGE DEPOSITS, SHALL NOT BE DUMPED INTO WATERCOURSES AS SPECIFIED UNDER SECTION 404 GUIDELINES OF THE CLEAN WATER ACT. DURING THE DREDGING OF APPROXIMATELY 100,000 CUBIC YARDS OF MATERIAL FROM THE KENTUCKY LAKE BOTTOM, A TURBIDITY CURTAIN OR SIMILAR MEASURE WILL BE USED TO REDUCE SILTATION. AREA FOR DEPOSIT OF DREDGED MATERIALS SHALL BE PROVIDED WITH TEMPORARY DIKES OR BULKHEADS FOR SEPARATION AND RETENTION OF SETTLEABLE SOLIDS. DREDGE SPOIL WILL BE DEPOSITED IN A LOCATION THAT IS TO BE APPROVED BY THE TENNESSEE VALLEY AUTHORITY, U.S. ARMY CORPS OF ENGINEERS, AND KENTUCKY DIVISION OF WATER PRIOR TO DEPOSITION.
- 6) MEASURES SHALL BE TAKEN TO PREVENT OR CONTROL SPILLS OF FUELS, LUBRICANTS, OR ANY OTHER MATERIALS USED IN CONSTRUCTION FROM ENTERING THE WATERCOURSE.
- 7) ANY FILL OR RIP-RAP SHALL BE OF SUCH COMPOSITION THAT IT WILL NOT ADVERSELY AFFECT THE BIOLOGICAL, CHEMICAL, OR PHYSICAL PROPERTIES OF THE RECEIVING WATERS AND/OR CAUSE VIOLATION VOLUME 1 OF 1 PAGE 11 OF 119 OF WATER QUALITY STANDARDS. IF RIP-RAP IS UTILIZED, IT IS TO BE OF SUCH SIZE AND WEIGHT THAT BANK STRESS OR SLUMP CONDITIONS WILL NOT BE CREATED BECAUSE OF ITS PLACEMENT, AS SPECIFIED IN SECTION 703 OF THE KENTUCKY STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION, CURRENT EDITION.

ADDITIONALLY, THE CONTRACTOR SHALL ADHERE TO THE FOLLOWING MEASURES SPECIFICALLY AIMED AT THE USE OF HABITAT BY BATS:

- * SEASONAL RESTRICTIONS PLACED UPON THE DECONSTRUCTION OF THE OLD BRIDGES ONCE THE NEW BRIDGES ARE OPERATIONAL. CONTRACTOR WILL DECONSTRUCT THE EXISTING BRIDGE DURING THE PERIOD OF TIME WHEN BATS AND OSPREY ARE NOT PRESENT (NOVEMBER 1-FEBRUARY 28).
- * CONSTRUCTION ACTIVITIES (EXCLUDING BRIDGE DECK POURING) WILL OCCUR ONLY DURING DAYLIGHT HOURS IN AND NEAR THE STREAM DURING THE SEASON OF POTENTIAL OCCUPATION BY BATS (APRIL 1- NOVEMBER 14). BECAUSE OF INCREASED HEAT AND HUMIDITY EXPERIENCED DURING THE SUMMER MONTHS, DECK POURING MAY NEED TO OCCUR DURING TIMES WHEN M. GRISESCENS ACTIVELY FORAGE. POURING OF CONCRETE DURING NIGHT-TIME HOURS ALLOWS FOR PROPER CURATION TO INCREASE STRUCTURAL INTEGRITY AND LONG-

THESE AREAS WILL NOT DIRECTLY ENTER THE WATER. FILTRATION OF EFFLUENT FROM EQUIPMENT CLEANING/STAGING AREAS WILL BE LOCATED SUCH THAT EFFLUENT WILL BE FILTERED THROUGH VEGETATED AREAS AND/OR PROPER SEDIMENT CONTROL STRUCTURES LOCATED BETWEEN THE STAGING AREA AND THE WATER; THEREFORE, MINIMIZING THE POTENTIAL FOR IMPACTS SUCH AS SEDIMENTATION AND POLLUTION.

- * THE PROPOSED BRIDGES HAVE BEEN DESIGNED TO REDUCE IMPACTS TO THE WATER BY MINIMIZING THE NUMBER OF NEW PIERS IN THE LAKES. ALL OF THE EXISTING PIERS WILL BE REMOVED.
- * DURING FOOTER/PIER CONSTRUCTION, COFFER DAMS, SEDIMENT CURTAINS, AND/OR SANDBAGS AND PUMPS MAY BE UTILIZED IN ORDER TO BE ABLE TO PLACE CONCRETE IN THE FOOTERS. IF SO, WATER REMOVED FROM INSIDE THE COFFER DAMS OR SANDBAGGED AREAS WILL BE FILTERED USING AN APPROVED SEDIMENT FILTRATION METHOD PRIOR TO RELEASE INTO THE WATER.
- * USFWS AND THE KYTC BIOLOGIST SHALL BE CONTACTED BY THE KYTC DISTRICT 1 ENVIRONMENTAL COORDINATOR AT LEAST ONE WEEK PRIOR TO THE START OF CONSTRUCTION FOR THE PROPOSED PROJECT.

#### ARCHAELOGICAL MATERIALS

IF ARCHAELOGICAL MATERIALS ARE UNCOVERED DURING CONSTRUCTION, ALL CONSTRUCTION WORK IN THE AREA OF THE FIND(S) WOULD CEASE. STAFF ARCHAEOLOGISTS EITHER KYTC (502-564-7250) OR KHC SHPO (502-564-7005) OFFICE WOULD BE CONTACTED IMMEDIATELY SO THAT REPRESENTATIVES OF THAT OFFICE MAY HAVE THE OPPORTUNITY TO EXAMINE AND EVALUATE THE MATERIALS. IF HUMAN REMAINS ARE DISCOVERED DURING CONSTRUCTION, ALL ACTIVITY IN THE VICINITY OF THE REMAINS WOULD CEASE IMMEDIATELY, AND THE STATE MEDICAL EXAMINER AND THE APPROPRIATE LOCAL LAW ENFORCEMENT AGENCY WOULD BE CONTACTED. IF MATERIALS ARE DISCOVERED ON ANY FEDERALLY OWNED PROPERTY, THEN REPRESENTATIVES OF THE ADMINISTERING AGENCY ALSO WOULD BE CONTACTED.

#### MITIGATION OF IMPACTS TO THREATHENED/ENDANGERED SPECIES-OSPREY

IN ADDITION TO OTHER REQUIRED MITIGATION, THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REMOVAL OF ALL OSPREY NESTS CURRENTLY ON THE EGGNER'S FERRY BRIDGE AND THE SUBSEQUENT REMOVAL OF ANY NEW NESTS BEING BUILT WHILE THE NEW KENTUCKY LAKE BRIDGE IS UNDER CONSTRUCTION. THE CURRENTLY EXISTING NESTS MUST BE REMOVED. BEFORE FEBRUARY 1, 2014, AND ANY SUBSEQUENT NESTS BEING BUILT WOULD NEED TO BE REMOVED BEFORE ANY EGGS ARE LAID. ONCE EGGS OR YOUNG BIRDS ARE IN A NEST, THEY MUST NOT BE DISTURBED. IT SHOULD BE NOTED THAT OSPREY COULD NEST ANYWHERE ON THE STRUCTURE, AT THE HIGHEST POINT OF THE SUPERSTRUCTURE OR ON THE ABUTMENTS ETC. THE KYTC DISTRICT ONE ENVIRONMENTAL COORDINATOR SHALL BE NOTIFIED TWENTY FOUR HOURS IN ADVANCE OF ANY REMOVAL OF A NEST SO THAT THE STATUS OF THE NEST CAN BE VERIFIED AND THE SUBSEQUENT REMOVAL DOCUMENTED. PRIOR TO BEGINNING ANY CONSTRUCTION ACTIVITY ON SITE, THE CONTRACTOR SHALL MEET WITH THE KYTC DISTRICT ONE COORDINATOR FOR ASSISTANCE WITH IDENTIFYING OSPREY NESTS ETC.. AND TO DETERMINE IF THERE ARE ANY NESTS ON THE STRUCUCTURE THAT NEED TO BE REMOVED. IMMEDIALTELY. THIS MITIGATION REQUIREMENT IS INTENDED TO MINIMIZE THE POSSIBILITY OF ANY POTENTIAL DELAYS TO THE PROJECT SCHEDULE. ALL COSTS ASSOCIATED WITH CARRYING OUT THIS MITIGATION REQUIREMENT SHALL BE BORNE BY THE CONTRACTOR AND

## SPECIAL NOTE FOR STEEL PIPE PILES – FURNISH

This Special Provision shall apply to all steel pipe piling. The Pile thickness shall be as indicated in the Contract Plans. It supplements information provided in Section 604 pertaining to "cast-in-place concrete piles", "cast-in-place piles", "cast-in-place pile shells", "steel pipe piles", "steel shells" or "pile shells", except as modified herein. Where a conflict exists between this Special Note and Section 604, the provisions herein shall govern.

Section references herein are to the Department's 2012 Standard Specifications for Road and Bridge Construction except as noted otherwise.

**1.0 DESCRIPTION.** This work consists of fabricating and furnishing steel pipe piles and test piles to their final length, including constrictor plates and pile shoes of the sizes required for installation and as shown on the Contract Plans. This includes performing all other incidental work as described herein and as measured in Section 8 of this Special Note. Within these provisions "final length" has the meaning defined in Section 8.

#### 2.0 MATERIALS.

**02.01 Steel Pipe Piles, including Test Piles.** Piles with wall thickness greater than 1 in. shall conform to ASTM A572, Grade 50. Piles with wall thicknesses not greater than 1 in. shall conform to either ASTM A572, Grade 50, or ASTM A252, Grade 3.

The carbon equivalency in all steel pipe piles, regardless of wall thickness, shall not exceed 0.45 percent, using the following formula from AWS D1.1 to calculate the percent carbon equivalent:

$$CE = C + (Mn + Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15$$

Sulfur content in all steel pipe piles shall be limited to 0.05%.

- **02.02 Pile Shoes.** Conform to ASTM A 148, Grade 90/60 or ASTM A694, Grade F60.
- **02.03** Constrictor Plate and Stiffeners. Conform to ASTM A 572, Grade 50.

Steel in constrictor plates and stiffeners shall satisfy the same carbon equivalency and sulfur content limitations as required for steel pipes in Section 2.01 of this Special Note.

- **02.04 Concrete.** For pipe pile concrete infill see Special Note for STEEL PIPE PILES INSTALL.
- **02.05 Steel Reinforcement.** For reinforcing steel in concrete infill see Special Note for STEEL PIPE PILES INSTALL.

# 3.0 EQUIPMENT.

**03.01 Equipment for Driving.** Installation is not part of this Special Provision. Conform to Special Note for STEEL PIPE PILES - INSTALL in the Contract Documents.

#### 4.0 FABRICATION.

**04.01 Steel Pipe Piles.** Fabrication of steel pipe piles with wall thicknesses greater than 1 in. shall conform to American Petroleum Institute Specification 2B (API 2B), including dimensional tolerances. API 2B Appendix A, Supplementary Requirements SR1 through SR4, shall not apply. Spiral welded pipe (SWP) with wall thickness greater than 1 in. shall not be permitted.

Fabrication of steel pipe piles with wall thicknesses not greater than 1 in. shall conform to either: API 2B, including dimensional tolerances; or ASTM A252, including dimensional tolerances plus these additional tolerance requirements:

- Circumference: The outside circumference at any point in a length of pipe shall be within  $\pm 1\%$  of the nominal circumference or within  $\pm 3\%$  in., whichever is less.
- Straightness: The straightness shall not vary more than 0.001 times the length of the pile (1/8 in. in any 10-ft length.)
- **04.02 Pile Shoes.** Pile shoe shall consist of cast steel or machined steel open-ended, inside flange cutting shoe of the size shown on the plans. Pile shoes shall have full contact with pile cross-section at the tip of the pipe to avoid stress concentration and possible damage to the pile during installation.
- **04.03** Constrictor Plate and Stiffeners. Conform to Section 607 and the Contract Plans.
- **04.04 Welding Procedure and Operator Qualifications.** Conform to API 2B.
- **04.05 Shop Welding.** Shop welding of steel pipe piling is defined as welding performed at the pipe manufacturer's facility. Shop welding of steel pipe piles shall conform to API 2B.
- **04.06 Field Welding.** Field welding of steel pipe piling is defined as welding performed after the material has been transported from the pipe manufacturer's facility. Field welding of pipe splices (girth welds) shall conform to the requirements of API 2B and the following:
  - A. Girth welds shall be complete joint penetration welds conforming to AWS D1.1.
  - B. Welds shall be located at least 12 in. away from a skelp end weld.

## SPECIAL NOTE FOR STEEL ERECTION - ARCH SPAN

**1.0 DESCRIPTION.** This work shall consist of fabricating, furnishing and installing the arch span superstructure, including tied arch rib, tie girder, knuckle, hanger attachments, floor beams, stringers and bracing. (Note: This work does not cover fabrication and installation of the arch hanger system, which is covered under Special Note for Bridge Strand Hangers.)

Materials and workmanship shall be in accordance with the KYTC Standard Specifications for Road and Bridge Construction, 2012 Edition (KYTC); AASHTO/ AWS D1.5M/D1.5 "Bridge Welding Code"; AWS D1.1/D1.1M "Structural Welding Code – Steel"; the Contract Drawings; and this Special Note.

Where a conflict exists between this Special Note and KYTC Section 607, the provisions herein shall govern.

**2.0 MATERIALS.** Materials shall conform to the Contract Drawings and KYTC Section 607.

#### 3.0 ERECTION ANALYSIS AND STABILITY.

**3.1 Steel Erection Responsibility.** The stability of the structure during erection, and the final geometry of the structure, is the responsibility of the Contractor. The Contractor shall retain an erection engineer for the purpose of evaluating the stability, state of stress and geometry of the structure during and after erection. The Contractor shall erect the bridge in a safe manner without over stressing the structural components during erection and shall leave the structure in a state of stress compatible with the design.

Structural steel shall be in conformance with KYTC Section 607. Steel erection shall be in conformance with the AASHTO/NSBA "Steel Bridge Erection Guide Specification", S10.1-2007.

- **3.2 Conceptual Erection Sequence.** The assumed erection sequence, as described in the General Note "Arch Erection and Camber" in the Contract Drawings, is that the arch rib, tie, bracing and floor system is constructed on blocking in the "no-load condition" with four bearing support points. The blocking is assumed to be removed only after the superstructure steel is completely erected. This would require floating in of the completed steel superstructure for placement on top of Piers 4 and 5. The Contractor may choose and develop any sequence that can safely erect the bridge without overstress or damage to the structural steel. The design of any necessary shoring / falsework and its foundations is the responsibility of the contractor.
- **3.3 Arch Erection And Camber.** In addition to the full analysis of the completed structure, load capacity and stability of the main span arch structure has been verified for the completely erected steel superstructure, prior to deck placement. The General Note "Arch Erection and Camber" details the assumed erection and deck pour sequence that is consistent with the camber diagrams shown on the Contract Drawings and the load

capacity of the fully-erected structure. No provision in either the camber or structural capacity of the members has been included for erection stresses.

The load capacity and stability verification of a partially completed arch span in the various stages of erection prior to installation of all steel members is the responsibility of the Contractor. The Contractor shall evaluate the partially completed structure in accordance with the same design provisions used for the permanent structure except as indicated herein. Wind buffeting loads for design are given on the Contract Drawings and are based on a project specific wind study and wind tunnel testing performed by RWDI and corresponds to a mean hourly wind speed of 69.6 mph at deck level. During construction, wind loads are predicted to correspond to a 10-year mean hourly velocity of 60.5 mph at the deck level. Therefore, the given buffeting loads can be proportioned accordingly and used for evaluating buffeting demands during construction.

No uplift at bearings shall be allowed in any construction phase.

**3.4** Changes to the Structure. Any changes to the structural steel system shown in the Contract Plans require reanalysis for load capacity and stability for both construction and permanent load conditions, including seismic. Diaphragm action of the stay-in-place forms shall be neglected in all analyses.

Dead load deflection, camber and stringer haunch thickness are based on the erection and slab pouring sequences as described in the General Note "Arch Erection and Camber" and as shown in the plans. Any deviation from this sequence will need to be evaluated by the Contractor's engineer to determine the effect on camber, dead load deflection and structural member stresses. This evaluation must be submitted to the Engineer for review and approval by the Engineer of Record.

## 4.0 QUALIFICATIONS AND SUBMITTALS.

- **4.1 Erector Qualifications.** Structural steel shall be erected by a qualified, competent erection contractor. To establish qualification the erection contractor shall submit to the Department proof of their experience on previous projects of equivalent complexity which, at a minimum, include the following:
  - A) Any one lift using two or more cranes/derricks/poles,
  - B) Steel spans over water or active railroad/rapid transit tracks,
  - C) Erection with floating equipment,
  - D) Field splicing primary members while held in place by erection equipment

The Department shall determine whether the submitted evidence is satisfactory to establish qualification and competency.

## 4.2 Erection Procedure.

**General.** The Contractor shall submit a detailed erection procedure to the Engineer for each bridge structural unit, prepared and sealed by a professional engineer licensed in Kentucky. The professional engineer who prepares the erection procedure

and calculations shall have experience in steel erection of similar size, complexity, and scope. The procedure shall address all requirements for erection of the structural steel into the final designed configuration and satisfy all written comments from the Engineer of Record and the Department or its agents prior to the start of erection. The procedure, as a minimum, shall include the following information:

## Drawings.

- A) Plan of the work area showing permanent support structures (piers and abutments), roads, waterways (including navigational channel), overhead and underground utilities, and other information pertinent to erection.
- B) Erection sequence for all members noting any temporary support conditions, such as holding crane positions, temporary supports, falsework, etc. Member reference marks, when reflected on the erection plan, should be the same as used on shop detail drawings.
- C) Primary member delivery location and orientation.
- D) Location of each crane for each primary member pick, showing radius and crane support (barges, mats, etc.).
- E) Capacity chart for each crane configuration and boom length used in the work.
- F) Center of gravity locations for primary members.
- G) Detail, weight, capacity, and arrangement of all rigging for primary member picks.
- H) Lifting weight of primary member picks, including all rigging and preattached elements.
- I) Details of any temporary lifting devices to be bolted or welded to permanent members, including: method and place (shop or field) of attachment; capacity; and method, time and crew responsible for removal.
- J) Bolted splice assembly requirements.
- K) Lifting/handling procedure for any primary member that has a lifted length-to-width ratio (1/b) greater than 85.
- L) Blocking details for bridge bearings.

## Calculations.

- A) Design calculations indicating the load capacity and verifying the stability of temporary supports for structure and crane(s) for each pick and release.
- B) Calculations to substantiate structural adequacy and stability of all steel members for each step of bridge assembly.
- C) Calculations to verify adequate capacity of contractor-fabricated rigging such as lift beams, welded lugs, spreader beams, beam clamps, etc. Submit manufacturers' certification or catalog cuts for pre-engineered devices.
- D) Geometrical information that will be used to monitor the structure during erection to ensure that the final geometry of the structure is as indicated on the plans.

## SPECIAL NOTE FOR STAINLESS STEEL REINFORCEMENT

**1.0 DESCRIPTION.** The Contractor shall use stainless steel reinforcement bars in the concrete deck slab, curb, and sidewalk, as indicated in the plans. Reinforcement bars shown in the Plans marked with the suffix "SS" shall be stainless steel as described herein.

The work shall be performed in accordance with the applicable requirements of sections 602 and 811 of the standard specifications.

## 2.0 MATERIALS.

<u>Grade and Type</u>: The Contractor shall supply test results certifying that the materials conform to Grade 60 or 75 deformed reinforcement bars per ASTM A955, including the annex, and must conform to one of the following UNS designations; S24100, S32205, S32304, S20910, S30400, S31603, S31653, S32101, S32201, or S31803.

All bars shall be of the same UNS designation.

<u>Chemical Composition</u>: Material shall conform to that specified in ASTM A276, Table 1, Chemical Requirements.

<u>Heat Treatment</u>: Bars may be furnished in one of the heat treatment conditions listed in ASTM A955, and as needed to meet the requirements of this specification.

<u>Finish</u>: Bars are to be supplied free of dirt, mill scale, oil, and debris by pickling. Bars shall be fabricated and bent using equipment that has been thoroughly cleaned or otherwise modified to prohibit contamination of the stainless steel from fragments of carbon steel or other contaminants.

Reinforcing bars displaying rust/oxidation, questionable blemishes, or that deviate from round shall be subject to rejection.

Bending: Bending shall be performed in accordance with Section 602 of the Standard Specifications and ASTM A955.

<u>Manufacturers</u>: The following manufactures are capable of producing material meeting this specification. Other suitable manufacturers may also exist. The Contractor is responsible for ensuring that all materials supplied meet the Contract requirements.

<u>Supplier</u>	Contact	Phone No.
Altec Steel, Inc. 5515 Meadow Crest Drive Dallas, TX 75229	Ross Paulson	425-823-1913
Dunkirk Specialty Steel 88 Howard Ave Dunkirk, NY	Gary Zaffalon	800-916-9133 716-366-1000 Ext 323

Special Note: Stainless Steel Reinforcement Effective with December 20, 2013 Letting

North American Stainless 6870 Highway 42 East Ghent, KY 41045	Todd Sullivan	502-347-6034
Salit Specialty Rebar 3235 Lockport Road Niagara Falls, NY 14305	Kevin Cornell	877-299-1700 716-299-1990
Talley Metals P. O. Box 2498 Hartsville, SC 29551	Melba Deese	843-335-7326 800-334-8324 Ext 712-2356

<u>Control of Material</u>: Samples for testing shall be supplied to the KYTC Materials Laboratory for testing, generally following applicable provisions of KM-101. One sample per heat per bar size shall be supplied. Each sample shall consist of two five-foot-long specimens.

Mill Test Reports: Reports shall be provided for the Project and shall:

- 1. Be from the supplying mill verifying that the stainless reinforcement provided has been sampled and tested and the test results meet the Contract requirements;
- 2. Include a copy of the chemical analysis of the steel provided, with the UNS designation, the heat lot identification and the source of the metal if obtained as ingots from another mill;
- 3. Include a copy of tensile strength, yield strength and elongation tests on each of the sizes (diameter in millimeters) of stainless steel reinforcement provided.
- 4. Permit positive determination that the reinforcement provided is that which the test results cover.
- 5. Include a statement certifying that the materials are being melted and manufactured in the United States.

#### 3.0 CONSTRUCTION.

<u>Methods</u>: Construction methods shall conform to Section 602 of the Standard Specifications except as modified below:

Ship, handle, store, and place the stainless steel reinforcement bars according to the applicable provisions with the following additions and exceptions:

1. Prior to shipping ensure that all chains and steel bands will not come into direct contact with the stainless steel reinforcement bars. Place wood or other soft materials (i.e., thick

The ends of the test pieces shall be socketed with sockets of the same design as those proposed for use in the construction. The strands, in single part tests, shall develop a minimum ultimate strength equal to the value stipulated in the applicable ASTM specification for the material being used and for the size of strand or rope specified. If, after six or more tests of straight strand of each size have been made, the Engineer and KYTC find that the strength and elasticity have sufficient uniformity, one test on a straight strand of each size may be made thereafter from each manufactured length of strand of each size, instead of one from each prestressed length. The strand shall show a well-defined and uniform elastic stretch and recovery after prestressing.

C. <u>Hanger Assemblies</u>. The Contractor shall prepare at least 8 specimens of hanger of each strand size, at least 25 diameters long, with sockets (selected at random from those prepared for use) attached to each end, and these specimens shall be stressed to destruction. Under this test, the specimens shall develop the ultimate strength. Material and method of socketing shall be the same for both the tests and the actual hanger strand. The sockets in every instance shall be of sufficient strength to produce failure in the strand material. Sockets used for the tests may not be reused in the actual construction. If an assembly should fail in the anchorage of the strand in the socket, or if a socket should break or otherwise fail at less than the specified ultimate load during the tests, six additional assemblies shall be fabricated and the tests repeated. If one or more sockets fail during additional tests, the entire lot shall be rejected and new sockets furnished and tested.

Certified test reports covering all the tests specified shall be furnished to the Engineer and KYTC. No claims for delay will be considered for testing or failure to submit required testing documentation in a timely manner.

<u>Shop Inspection.</u> The Engineer reserves the right to visit the manufacturer's fabrication shop for purposes of inspecting the manufacturing, assembly and testing of the hanger assemblies.

- **6.0 IDENTIFICATION, STORAGE & HANDLING.** Identification marks shall be used on the strand to facilitate erection and the Contractor shall use suitable means to protect the strands in transit and during the handling and erection. Strands shall be properly coiled or rolled on reels. Any kinked or damaged strand will be rejected. Straightening of bent wires will not be permitted.
- **7.0 INSTALLATION.** Hangers shall be installed so that the strands at each panel will be equally stressed. Necessary adjustment shall be provided through the use of threaded sockets.

The hanger strand shall be erected with sockets in the same relative position to each other as when the strands were measured and the sockets installed, with the markings along the length of the strand in a straight line.

Spacers shall be located at the intersection of network hangers. Spacers shall incorporate an elastomeric element for purposes of providing a degree of damping and shall hold the individual ropes or strands of each hanger in their correct geometric relationship.

The Engineer will confirm the procedure, opening and alignment prior to concrete placement. After confirmation, remove the finger plates or sliding plates before concreting. Cast and cure the expansion joint blockout per KYTC specifications. Place concrete under the expansion dams, vibrate until the concrete is forced through air holes, and strike off excess concrete. After the concrete has cured, clean air holes and fill with an approved sealer.

Install the fabric trough and the finger or sliding plates according to the Contract Documents and shop drawings. Do not splice the drain trough, unless indicated. If splices are indicated, use splices vulcanized by the manufacturer. Do not use longitudinal splices.

- **7.0 SUBMITTALS.** Submit shop drawings, for each location, type and model of expansion device used. Shop drawings shall include, but not be limited to, the following:
  - A. Complete details of all components and sections showing all materials used in the expansion joints.
  - B. A listing of all applicable KYTC, ASTM and AASHTO specifications.
  - C. Name and address of the manufacturer, and location of the fabrication plant.
  - D. Name and telephone number of the manufacturer's representative who will be responsible for coordination of production, inspection, sampling and testing.
  - E. Welding procedures used in the expansion joint assembly manufacture clearly described and detailed.
  - F. Table of longitudinal offsets for installation at varying temperatures. Use 60°F as the mean temperature.

Joint shop drawings and neoprene trough shop drawings shall be coordinated to ensure that joints and troughs will fit when field assembled. Fabrication shall not commence until the approved shop drawings are in the hands of the Inspector and fabricator and the Engineer has authorized fabrication.

**8.0 MEASUREMENT.** Quantity for Finger Expansion Joint will be measured per linear foot inside face to inside face of exterior traffic barriers. The unit price for Finger Expansion Joint will be full compensation for furnishing, fabricating, installing structural steel tooth plates, roadway joint seals, drainage troughs, catch basins, downspouts, sidewalk plate, barrier cover plates and all material, labor, equipment, tools and incidentals necessary to complete the work as specified in the Contract Documents.

#### 9.0 PAYMENT.

CodePay ItemPay Unit23859ECFINGER EXPANSION JOINTLF

Any proposed corrective procedure shall be submitted to the Engineer for approval before corrective work is begun.

**8.0 SUBMITTALS.** The Contractor shall submit details of the MBJS to be used together with installation and waterproofing plans to the Engineer for approval prior to fabrication of the MBJS.

The shop plans shall include, but not be limited to the following:

- plan and section views of the MBJS for each movement rating and roadway width, showing dimensions and tolerances.
- all center beam/support bar joints and all shop and field splices
- complete details of all components and sections showing all material incorporated into the MBJS
- all ASTM, AASHTO or other material designations
- welding procedure specifications
- corrosion protection system
- method of installation, including, but not limited to: sequence; installation gap setting for various temperatures; support during placement of the concrete; lifting locations and lifting mechanisms; and installation at curbs
- temperature adjustment devices and opening dimensions relative to installation temperature
- any required changes to the blockout reinforcement in order to accommodate the MBJS temporary bridging plan if construction traffic is anticipated following installation
- design calculations in accordance with Section 3 of this Special Note

The Contractor shall also submit the following test reports and certificates for review and approval:

- Manufacturer's certificate of compliance with the AISC Quality Certification Program, Simple Steel Bridges.
- Certification that welding inspection personnel are qualified and certified as welding inspectors under AWS QC1, Standard for Qualification and Certification of Welding Inspectors. Documentation that any personnel performing nondestructive evaluation (NDH) are certified by ASNT.
- Manufacturer's certificate of compliance for the PTFE sheeting or fabric.
- Certification that MBJS passed the Prequalification Tests required in Section 1.3.
- Certification that the bearings, springs, and equidistant devices are the same formulation, manufacturer and configuration that were used in the Prequalification Tests required in Section 1.3. In each certification, the name and address of the Manufacturer of the springs, bearings and equidistant devices shall be provided.

The Contractor shall submit for the Engineer's approval a written maintenance and part replacement plan prepared by the joint manufacturer. This plan shall include a list of parts and

REVISED: 11-26-13 Contract ID: 131212 Page 163 of 403

instructions for maintenance inspection, acceptable wear tolerances, methods for determining wear, and procedures for replacing worn parts.

Fabrication shall not commence until the approved shop drawings are in the hands of the Inspector and fabricator and the Engineer has authorized fabrication.

**9.0 MEASUREMENT.** Quantity for Modular Expansion Joint will be measured per linear foot inside face to inside face of exterior traffic barriers. The unit price will be full compensation for furnishing, fabricating and installing MBJS, including sidewalk plate and all barrier cover plates, and all material, labor, equipment, tools and incidentals necessary to complete the work as specified in the Contract Documents.

## 10.0 PAYMENT.

<u>Code</u>	Pay Item	<u>Pay Unit</u>
24610EC	MODULAR EXPANSION JOINT	LF

## SPECIAL NOTE FOR REMOVAL OF EXISTING BRIDGE

- **1.0 DESCRIPTION.** The Contractor shall remove the existing Eggner's Ferry Bridge structure to the limits indicated on the plans in accordance with KYTC Standard Specification Section 203 "Removal of Structures and Obstructions" and the following special note. Where a conflict exists between these special notes and Section 203, the provisions in these special notes shall govern.
- **2.0 CONSTRUCTION.** Special conditions within the project permits relate to demolition and removal of the Eggner's Ferry Bridge. Comply with the conditions stated in all permits. Perform demolition between November 15th and February 28th.

Take ownership and dispose of all materials removed with the exception of the Span 'E' Truss.

Existing span 'E' is identified as the parallel chord truss replacement superstructure erected in 2012 after a vessel collision collapsed the original span. Salvage the steel superstructure truss of existing span 'E'. After removing the bridge deck slab from the structural steel, lower the truss Span 'E' intact onto a barge and transport to the Eddyville Port Authority for storage. The Span 'E' truss shall remain the property of the Department.

Obtain a lease for the Department with the Port for a period of six months, on a monthly basis. The lease shall be in the Department's name. If the Port is unavailable to store the steel span, or if the terms of the Lease are unacceptable to the Department, the Contractor shall coordinate with other potential storage location property owners and with the Department to secure an alternate lease.

The representation of existing bridge on plan sheets is for information only. The contractor is referred to the existing bridge plans to determine approximate quantities for removal. The contractor is responsible for location and protection of all existing utilities.

The production of the demolition plan and procedures is the responsibility of the contractor. The demolition plan must clearly demonstrate the safety and feasibility of all proposed operations. All submittal components must be sealed by a professional engineer licensed in the Commonwealth of Kentucky.

Obtain all necessary licenses, training and permits for the handling of and use of explosives, if used.

Blasting of superstructure steel truss spans with explosives will be acceptable to the Department.

The use of explosives under water may or may not be acceptable to all governing agencies. The Contractor shall obtain all necessary permits, licenses, certifications, etc. for use of explosives. The Contractor shall contact the appropriate governing agencies prior to the use of explosives and provide confirmation to the Department that the necessary permits, licenses, certifications, etc. have been obtained.

Submit the demolition plan to the Engineer six months prior to scheduled demolition.

The engineer will coordinate submission to the United States Coast Guard. Do not proceed with demolition until the engineer has received a copy of written acceptance of the demolition plan from the United States Coast Guard. Do not proceed with demolition until the demolition plan is returned by the Engineer as approved by the United States Coast Guard.

Schedule the removal of those trusses and piers obstructing the navigation channel to occur as the first activities. This is not intended to preclude the Contractor from also working at

MARSHALL - TRIGG COUNTIES 121GR13D012 - NHPP 0801 (098) ADDED: 11-26-13 Contract ID: 131212 Page 376(a) of 403

# TRANSPORTATION CABINET DIVISION OF CONSTRUCTION PROCUREMENT

PROJECT WAGE RATES LETTING: 12-20-2013

MARSHALL-TRIGG COUNTIES, 121GR13D012-NHPP 0801 (098) CADIZ-AURORA ROAD (US 68/KY 80) Grade, Drain, & Surface

# **NOTICE:**

There are three (3) sets of wage rates established for this project. The Federal wage rate decision KY130102 applies for roadway work performed in Marshall and Trigg Counties. The wage rate Decision Number KY130083 applies for bridge work performed in Marshall County. The wage rate Decision Number KY130093 applies for bridge work performed in Trigg County.

General Decision Number: KY130093 07/26/2013 KY93

Superseded General Decision Number: KY20120118

State: Kentucky

Construction Type: Heavy

Including Water and Sewer Line Construction

County: Trigg County in Kentucky.

HEAVY CONSTRUCTION PROJECTS (including sewer/water construction).

${\tt Modification}$	Number	Publication	Date
0		01/04/2013	
1		01/18/2013	
2		02/01/2013	
3		03/29/2013	
4		04/05/2013	
5		04/26/2013	
6		06/07/2013	
7		06/14/2013	
8		06/28/2013	
9		07/05/2013	
10		07/26/2013	

CARP0357-001 04/01/2013

	Rates	Fringes
CARPENTER (Includes Form Work).	\$ 26.90	14.42
ELEC0816-007 06/01/2013		

	Rates	Fringes
ELECTRICIAN	\$ 30.40	25.5%+5.60

ENGI0181-007 07/01/2013

	Rates	Fringes
POWER EQUIPMENT OPERATOR:		
Backhoe/Excavator/Trackhoe,		
Bulldozer & Loader (Front		
End)	\$ 28.00	13.90
Bobcat/Skid Loader &		
Forklift	\$ 25.45	13.90
Crane	29.07	13.90
Oiler & Roller	\$ 25.17	13.90

Operators on cranes with booms one hundred fifty feet (150) and over (including jib) shall receive one dollar (\$1.00) above rate

All crane operators operating cranes where the lenth of the boom in combination with the length of the piling leads equal or exceeds one hundred fifty (150) feet, shall receive one dollar (\$1.00) above the rate.

______

IRON0782-002 05/01/2013

	Rates	Fringes	
IRONWORKER, STRUCTURAL AND REINFORCING Projects with a total contract cost of \$20,000,000.00 or above All Other Work		19.91 18.65	
LABO1392-018 07/01/2013			
	Rates	Fringes	
LABORER  Common or General		11.00	
PLAS0135-002 07/01/2012			
	Rates	Fringes	
CEMENT MASON/CONCRETE FINISHER	.\$ 22.90	13.55	
* PLUM0184-004 07/01/2013			
	Rates	Fringes	
PLUMBER	\$ 33.11	14.83	
TEAM0236-002 03/31/2013			
	Rates	Fringes	
TRUCK DRIVER (Dump Truck)	\$ 19.56	16.85	
SUKY2010-152 09/14/2010			
	Rates	Fringes	
LABORER: Pipelayer	\$ 17.51	6.89	
WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.			
Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (ii)).			

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular

rate is union or non-union.

Union Identifiers

An identifier enclosed in dotted lines beginning with characters other than "SU" denotes that the union classification and rate have found to be prevailing for that classification. Example: PLUM0198-005 07/01/2011. The first four letters , PLUM, indicate the international union and the four-digit number, 0198, that follows indicates the local union number or district council number where applicable , i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. The date, 07/01/2011, following these characters is the effective date of the most current negotiated rate/collective bargaining agreement which would be July 1, 2011 in the above example.

Union prevailing wage rates will be updated to reflect any changes in the collective bargaining agreements governing the rates.

0000/9999: weighted union wage rates will be published annually each January.

Non-Union Identifiers

Classifications listed under an "SU" identifier were derived from survey data by computing average rates and are not union rates; however, the data used in computing these rates may include both union and non-union data. Example: SULA2004-007 5/13/2010. SU indicates the rates are not union majority rates, LA indicates the State of Louisiana; 2004 is the year of the survey; and 007 is an internal number used in producing the wage determination. A 1993 or later date, 5/13/2010, indicates the classifications and rates under that identifier were issued as a General Wage Determination on that date.

Survey wage rates will remain in effect and will not change until a new survey is conducted.

______

#### WAGE DETERMINATION APPEALS PROCESS

- 1.) Has there been an initial decision in the matter? This can be:
- * an existing published wage determination
- * a survey underlying a wage determination
- * a Wage and Hour Division letter setting forth a position on a wage determination matter
- * a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial

contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations Wage and Hour Division U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.

3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

4.) All decisions by the Administrative Review Board are final.

______

END OF GENERAL DECISION

General Decision Number: KY130083 10/04/2013 KY83

Superseded General Decision Number: KY20120107

State: Kentucky

Construction Type: Heavy

Incuding Water and Sewer Line Construction

Counties: Ballard, Caldwell, Calloway, Carlisle, Crittenden, Graves, Hickman, Hopkins, Livingston, Lyon, Marshall, Ohio,

Todd and Union Counties in Kentucky.

HEAVY CONSTRUCTION PROJECTS (including sewer/water construction).

Modification	Number	Publication	Date
0		01/04/2013	
1		04/26/2013	
2		05/24/2013	
3		06/14/2013	
4		06/21/2013	
5		07/05/2013	
6		10/04/2013	

CARP0357-007 04/01/2013

BALLARD, CALDWELL, CALLOWAY, CARLISLE, CRITTENDEN, GRAVES, HICKMAN, LIVINGSTON, LYON, & MARSHALL COUNTIES

	Rates	Fringes
CARPENTER (Includes Form Work).	\$ 26.90	14.42
CARP0549-007 04/01/2013		

HOPKINS, OHIO, TODD & UNION COUNTIES

	Rates	Fringes
CARPENTER (Includes Form Work)	.\$ 26.90	14.46
ENGI0181-069 07/01/2013		

Rates

Fringes

13.90

	_
POWER EQUIPMENT OPERATOR:	
Backhoe/Excavator/Trackhoe,	
Bulldozer, Cherry Picker,	
Drill, Grader/Blade,	
Loader, Mechanic, & Scraper.\$ 28.00	13.90
Crane\$ 29.07	13.90

Operators on cranes with booms one hundred fifty feet (150) and over (including jib) shall receive one dollar (\$1.00) above rate

All crane operators operating cranes where the lenth of the boom in combination with the length of the piling leads

Oiler.....\$ 25.17

equal or exceeds one hundred fifty (150) feet, shall receive one dollar (\$1.00) above the rate.

-----

IRON0103-018 04/01/2013

HOPKINS, OHIO & UNION COUNTIES

	Rates	Fringes
IRONWORKER, REINFORCING	\$ 27.82	16.555
* TDOMO402 015 05/01/2012		

* IRON0492-015 05/01/2013

TODD COUNTY

	Rates	Fringes
IRONWORKER, REINFORCING	\$ 23.84	10.96
IRON0782-013 05/01/2013		

BALLARD, CALDWELL, CALLOWAY, CARLISLE, CRITTENDEN, GRAVES, HICKMAN, LIVINGSTON, LYON, & MARSHALL COUNTIES

	Rates	Fringes	
IRONWORKER, REINFORCING Projects with a total contract cost of \$20,000,000.00 or above. All Other Work	•	19.91 18.65	
LABO0561-009 07/01/2013			

CRITTENDEN & UNION COUNTIES

	2
LABORER	
Common or General,	
Flagger, & Grade Checker\$ 21.11	12.25
Pipelayer\$ 21.36	12.25
LABO1214-008 07/01/2013	

Rates

Fringes

BALLARD, CALLOWAY, CARLISLE, GRAVES, HICKMAN, LIVINGSTON, LYON, & MARSHALL COUNTIES

	Rates	Fringes
LABORER  Common or General,  Flagger, & Grade Checker	¢ 21 20	12.01
Pipelayer		12.01
LABO1392-017 07/01/2012		

CALDWELL, HOPKINS, OHIO & TODD COUNTIES

Rates Fringes

LABORER

Common or General,
Flagger, & Grade Checker...\$ 21.96 11.00
Pipelayer.....\$ 22.21 11.00

-----

SUKY2010-141 09/14/2010

Rates Fringes

OPERATOR: Trencher...........\$ 19.03 5.78

-----

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

______

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (ii)).

-----

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular rate is union or non-union.

Union Identifiers

An identifier enclosed in dotted lines beginning with characters other than "SU" denotes that the union classification and rate have found to be prevailing for that classification. Example: PLUM0198-005 07/01/2011. The first four letters , PLUM, indicate the international union and the four-digit number, 0198, that follows indicates the local union number or district council number where applicable , i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. The date, 07/01/2011, following these characters is the effective date of the most current negotiated rate/collective bargaining agreement which would be July 1, 2011 in the above example.

Union prevailing wage rates will be updated to reflect any changes in the collective bargaining agreements governing the rates.

0000/9999: weighted union wage rates will be published annually each January.

Non-Union Identifiers

Classifications listed under an "SU" identifier were derived from survey data by computing average rates and are not union rates; however, the data used in computing these rates may include both union and non-union data. Example: SULA2004-007 5/13/2010. SU indicates the rates are not union majority rates, LA indicates the State of Louisiana; 2004 is the year of the survey; and 007 is an internal number used in producing the wage determination. A 1993 or later date, 5/13/2010, indicates the classifications and rates under that identifier were issued as a General Wage Determination on that date.

Survey wage rates will remain in effect and will not change until a new survey is conducted.

_____

#### WAGE DETERMINATION APPEALS PROCESS

- 1.) Has there been an initial decision in the matter? This can be:
- * an existing published wage determination
- * a survey underlying a wage determination
- * a Wage and Hour Division letter setting forth a position on a wage determination matter
- * a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations Wage and Hour Division U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.

3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative

Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

4.) All decisions by the Administrative Review Board are final.

END OF GENERAL DECISION

131212

**PROPOSAL BID ITEMS** 

Page 1 of 7

Report Date 1/26/13

Section: 0001 - PAVING

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	<b>AMOUNT</b>
0010	00001	DGA BASE	21,669.00	TON	\$	
0020	00003	CRUSHED STONE BASE	994.00	TON	\$	
0030	00018	DRAINAGE BLANKET-TYPE II-ASPH	7,208.00	TON	\$	
0040	00212	CL2 ASPH BASE 1.00D PG64-22	693.00	TON	\$	
0050	00214	CL3 ASPH BASE 1.00D PG64-22	19,791.00	TON	\$	
0060	00309	CL2 ASPH SURF 0.50D PG64-22	2,152.00	TON	\$	
0070	00324	CL3 ASPH SURF 0.50B PG64-22	3,150.00	TON	\$	

Section: 0002 - ROADWAY

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP AM	OUNT
0800	00071	CRUSHED AGGREGATE SIZE NO 57	979.00	TON	\$	
0090	00078	CRUSHED AGGREGATE SIZE NO 2	29.00	TON	\$	
0100	00100	ASPHALT SEAL AGGREGATE	72.00	TON	\$	
0110	00103	ASPHALT SEAL COAT	9.00	TON	\$	
0120	01000	PERFORATED PIPE-4 IN	7,479.00	LF	\$	
0130	01001	PERFORATED PIPE-6 IN	2,315.00	LF	\$	
0140	01010	NON-PERFORATED PIPE-4 IN	525.00	LF	\$	
0150	01011	NON-PERFORATED PIPE-6 IN	192.00	LF	\$	
0160	01020	PERF PIPE HEADWALL TY 1-4 IN	4.00	EACH	\$	
0170	01021	PERF PIPE HEADWALL TY 1-6 IN	1.00	EACH	\$	
0180	01024	PERF PIPE HEADWALL TY 2-4 IN	15.00	EACH	\$	
0190	01028	PERF PIPE HEADWALL TY 3-4 IN	4.00	EACH	\$	
0200	01029	PERF PIPE HEADWALL TY 3-6 IN	1.00	EACH	\$	
0210	01032	PERF PIPE HEADWALL TY 4-4 IN	4.00	EACH	\$	
0220	01033	PERF PIPE HEADWALL TY 4-6 IN	1.00	EACH	\$	
0230	01741	CORED HOLE DRAINAGE BOX CON-6 IN	8.00	EACH	\$	
		DELINEATOR FOR GUARDRAIL MONO				
0240	01982	DIRECTIONAL WHITE	82.00	EACH	\$	
0250	01984	DELINEATOR FOR BARRIER - WHITE	86.00	EACH	\$	
0260	01985	DELINEATOR FOR BARRIER - YELLOW	173.00	EACH	\$	
0270	02014	BARRICADE-TYPE III	4.00	EACH	\$	
0280	02091	REMOVE PAVEMENT	2,809.00	SQYD	\$	
0290	02159	TEMP DITCH	5,885.00	LF	\$	
0300	02160	CLEAN TEMP DITCH	17,655.00	LF	\$	
0310	02200	ROADWAY EXCAVATION	51,362.00	CUYD	\$	
0320	02204	SPECIAL EXCAVATION	3,974.00	CUYD	\$	
0330	02241	RESHAPING AND COMPACTING	2,586.00	LF	\$	
0340	02242	WATER	2.00	MGAL	\$	
0350	02381	REMOVE GUARDRAIL	7,059.00	LF	\$	
0360	02432	WITNESS POST	3.00	EACH	\$	
0370	02436	R/W MARKER RURAL TYPE 3	7.00	EACH	\$	
0380	02483	CHANNEL LINING CLASS II	98.00	TON	\$	
0390	02545	CLEARING AND GRUBBING (APPROXIMATELY 1.5 ACRES IN MARSHALL COUNTY)	1.00	LS	\$	

REVISED: 11-26-13 Contract ID: 131212

Page 397 of 403

REVISED: 11-26-13 Contract ID: 131212 Page 398 of 403

Page 2 of 7

131212

## **PROPOSAL BID ITEMS**

Report Date 1/26/13

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	AMOUNT
LINL	BID CODE	TEMPORARY SIGNS (FOR TRAFFIC	QUANTITI	ONII	ONIT FRIOLIF	AWOON
0400	02562	MAINTENANCE)	1,167.00	SQFT	\$	
0410	02570	PROJECT CPM SCHEDULE SEE DESIGN FOR SPECIAL NOTE	1.00	LS	\$	
0420	02585	EDGE KEY	240.00	LF	\$	
0430	02596	FABRIC-GEOTEXTILE TYPE I	12,241.00	SQYD	\$	
0440	02599	FABRIC-GEOTEXTILE TYPE IV	10,052.00	SQYD	\$	
0450	02600	FABRIC GEOTEXTILE TY IV FOR PIPE	1,882.00	SQYD	\$2.00 \$	\$3,764.00
0460	02650	MAINTAIN & CONTROL TRAFFIC (TRIGG COUNTY)	1.00	LS	\$	
0470	02650	MAINTAIN & CONTROL TRAFFIC (MARSHALL COUNTY)	1.00	LS	\$	
0480	02673	PRECAST VEHICLE STOP	172.00	LF	\$	
0490	02696	SHOULDER RUMBLE STRIPS-SAWED	6,560.00	LF	\$	
0500	02701	TEMP SILT FENCE	5,885.00	LF	\$	
0510	02703	SILT TRAP TYPE A	33.00	EACH	\$	
0520	02704	SILT TRAP TYPE B	33.00	EACH		
0530	02705	SILT TRAP TYPE C	33.00	EACH		
0540	02706	CLEAN SILT TRAP TYPE A		EACH		
0550	02707	CLEAN SILT TRAP TYPE B		EACH		
0560	02708	CLEAN SILT TRAP TYPE C		EACH		
0570	02709	CLEAN TEMP SILT FENCE	17,655.00			
0580	02726	STAKING (TRIGG COUNTY)	1.00			
0590	02726	STAKING (MARSHALL COUNTY)	1.00			
	02720	REMOVE STRUCTURE (EGGNER FERRY	1.00			
0600	-	BRIDGE)		_	· ·	
0610	02998	MASONRY COATING	2,173.00			
0620	03144	CONC MEDIAN BARRIER TYPE 9C1	3,343.00		· ·	
0630	05950	EROSION CONTROL BLANKET	2,534.00			
0640	05952	TEMP MULCH	170,660.00			
0650	05953	TEMP SEEDING AND PROTECTION	16,343.00			
0660	05966	TOPDRESSING FERTILIZER	18.00	_		
0670	05985	SEEDING AND PROTECTION	163,432.00			
0680	05989	SPECIAL SEEDING CROWN VETCH	170,661.00	SQYD		
0690	06510	PAVE STRIPING-TEMP PAINT-4 IN	38,850.00	LF	*	
0700	06514	PAVE STRIPING-PERM PAINT-4 IN	43,862.00	LF	\$	
0710	06550	PAVE STRIPING-TEMP REM TAPE-W	8,772.00	LF	\$	
0720	06551	PAVE STRIPING-TEMP REM TAPE-Y	12,208.00	LF	\$	
0730	06574	PAVE MARKING-THERMO CURV ARROW	6.00	EACH	\$	
0740	06575	PAVE MARKING-THERMO COMB ARROW	2.00	EACH	\$	
0750	06592	PAVEMENT MARKER TYPE V-B W/R	119.00	EACH	\$	
0760	06593	PAVEMENT MARKER TYPE V-B Y/R	173.00	EACH	\$	
0770	08019	CYCLOPEAN STONE RIP RAP	19,269.00	TON	\$	
0780	10020NS	FUEL ADJUSTMENT	72,080.00	DOLL	\$1.00 \$	\$72,080.00
0790	10030NS	ASPHALT ADJUSTMENT	100,825.00	DOLL	\$1.00 \$	\$100,825.00
0800	20060ES719	<b>GUARDRAIL STEEL W BEAM-S FACE CR</b>	5,472.00	LF	\$	
0810	20062ES719	<b>GUARDRAIL TERMINAL SECT NO.1 CR</b>	6.00	EACH	\$	
0820	20206EC	PAVE MARK HANDICAP SYMBOL	2.00	EACH		
0830	20285ES719	<b>GUARDRAIL END TREATMENT TY 2A-CR</b>		EACH		
0840	20382ES719	G/R CONN TO BRIDGE END TY A-CR		EACH		
0850	21325ND	CONSTRUCTION TRAILER	1.00			

REVISED: 11-26-13 Contract ID: 131212 Page 399 of 403

## **PROPOSAL BID ITEMS**

131212

Report Date 1/26/13

Page 3 of 7

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	AMOUNT
0860	23131ER701		PIPELINE VIDEO INSPECTION	561.00	LF	\$	
0870	23143EN		DECORATIVE HANDRAIL (STEEL POWDER COATED FINISH)	1,977.00	LF	\$	
0880	23162EN		GUARDRAIL CONN TO BR END TY A-1 CR	4.00	EACH	\$	
0890	23274EN11F		TURF REINFORCEMENT MAT 1	1,078.00	SQYD	\$	
0900	23394EC		CRASH CUSHION TY VI CLASS C TL3-1	1.00	EACH	\$	
0910	23651ES719		G/R END TREATMENT TY 1-CR	1.00	EACH	\$	
0920	23912EC		WEB CAMERA CONST MONITORING SYSTEM	1.00	LS	\$	
0930	23979EC		CRASH CUSHION TY VI CLASS C TL3	2.00	EACH	\$	
0940	24620EC		HELPER BOAT	1.00	LS	\$	
0950	24626EC		PROJECT INSPECTION BOAT	1.00	LS	\$	
0960	24636EC		GUARDRAIL TERMINAL SECT NO.3 CR	2.00	EACH	\$	
0970	24637EC		GUARDRAIL STEEL W BEAM-D FACE CR	2,768.00	LF	\$	
0980	30000		REMOVABLE BOLLARD	3.00	EACH	\$	

# Section: 0003 - DRAINAGE

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	<b>AMOUNT</b>
0990	00440		ENTRANCE PIPE-15 IN	65.00	LF	\$	
1000	00443		ENTRANCE PIPE-24 IN	130.00	LF	\$	
1010	00521		STORM SEWER PIPE-15 IN	189.00	LF	\$	
1020	00522		STORM SEWER PIPE-18 IN	289.00	LF	\$	
1030	01202		PIPE CULVERT HEADWALL-15 IN	1.00	EACH	\$	
1040	01204		PIPE CULVERT HEADWALL-18 IN	2.00	EACH	\$	
1050	01208		PIPE CULVERT HEADWALL-24 IN	2.00	EACH	\$	
1060	01432		SLOPED BOX OUTLET TYPE 1-15 IN	3.00	EACH	\$	
1070	01505		DROP BOX INLET TYPE 5B	1.00	EACH	\$	
1080	01538		DROP BOX INLET TYPE 7	1.00	EACH	\$	
1090	01621		CONC MED BARR BOX INLET TY 9B1	2.00	EACH	\$	
1100	08100		CONCRETE-CLASS A (FOR END ANCHORS)	2.82	CUYD	\$	
1110	23952EC		DRAINAGE JUNCTION BOX TY B	1.00	EACH	\$	

# Section: 0004 - BRIDGE - WEST APPROACH

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	<b>AMOUNT</b>
1120	02231	STRUCTURE GRANULAR BACKFILL	1,115.00	CUYD	\$	
1130	02599	FABRIC-GEOTEXTILE TYPE IV	328.00	SQYD	\$	
1140	02998	MASONRY COATING	5,578.00	SQYD	\$	
1150	08001	STRUCTURE EXCAVATION-COMMON	2,483.00	CUYD	\$	
1160	08033	TEST PILES (INSTALL 30 IN PIPE PILE - 1 IN)	459.00	LF	\$	
1170	08033	TEST PILES (INSTALL 72 IN PIPE PILE - 2 IN)	448.00	LF	\$	
1180	08033	TEST PILES (FURNISH 30 IN PIPE PILE - 1 IN)	468.00	LF	\$	
1190	08033	TEST PILES (FURNISH 72 IN PIPE PILE - 2 IN)	516.00	LF	\$	
1200	08100	CONCRETE-CLASS A REVISED: 11-26-13	2,078.00	CUYD	\$	
1210	08101	CONCRETE-CLASS A MOD	258.00	CUYD	\$	
1220	08104	CONCRETE-CLASS AA REVISED: 11-26-13	3,943.00	CUYD	\$	
1230	08150	STEEL REINFORCEMENT	517,011.00	LB	\$	

REVISED: 11-26-13 Contract ID: 131212 Page 400 of 403

131212

## **PROPOSAL BID ITEMS**

Report Date 1/26/13

Page 4 of 7

LINE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	AMOUNT
1240	08151	STEEL REINFORCEMENT-EPOXY COATED	1,251,172.00	LB	\$	
1250	08160	STRUCTURAL STEEL (APPROACH SPANS, APPROXIMATELY 9,276,108 LBS.)	1.00	LS	\$	
1230	00100	SHEAR CONNECTORS(APPROXIMATELY	1.00	LO	Ψ	
		22,604 LBS)				
1260	08170	REVISED: 11-26-13	1.00	LS	\$	
1270	08267	NAVIGATION LIGHTING	1.00	LS	\$	
1280	08500	APPROACH SLAB	204.00	SQYD	\$	
1290	08820	DRAIN PIPE-6 IN (FIBERGLASS)	200.00	LF	\$	
1300	20154ND	DRAIN ASSEMBLY	16.00	EACH	\$	
		<b>DYNAMIC PILE TESTING (ON WATER -</b>				
1310	23233EC	RESTRIKE)	15.00	EACH	\$	
1320	23233EC	DYNAMIC PILE TESTING (ON LAND -	E 00	EACH	¢	
1320	23233EU	INITIAL) DYNAMIC PILE TESTING (ON LAND -	5.00	EACH	\$	
1330	23233EC	RESTRIKE)	10.00	EACH	\$	
		DYNAMIC PILE TESTING (ON WATER -	10100		<b>Y</b>	
1340	23233EC	INITIAL)	9.00	EACH	\$	
350	23538EC	PEDESTRIAN RAIL	1,452.00	LF	\$	
360	23859EC	FINGER EXPANSION JOINT	74.00	LF	\$	
1370	23868EC	STRUCTURE LIGHTNING PROTECTION	1.00	LS	\$	
1380	24538ED	RAIL SYSTEM TYPE 11	2,880.00	LF	\$	
1390	24550EC	VIBRATION MONITORING	1.00	LS	\$	
1400	24606ED	HSS BARRIER RAIL - 3 RAIL	1,429.00	LF	\$	
1410	24611EC	SEISMIC DAMPERS (BENT ENDS)	6.00	EACH	\$	
1420	24611EC	SEISMIC DAMPERS (PIERS 4 & 5)	6.00	EACH	\$	
1430	24614EC	DISK EXPANSION BEARING	12.00	EACH	\$	
1440	24616EC	PATH DELINEATION LIGHTING	1.00	LS	\$	
1450	24617EC	INSTALL (AT&T DUCTBANK)	1,407.00	LF	\$	
1460	24618EC	PIPE PILES (INSTALL 72 IN PIPE PILE - 2 IN)	836.00	LF	\$	
1470	24618EC	PIPE PILES (FURNISH 30 IN PIPE PILE - 1 IN)	3,393.00	LF	\$	
1480	24618EC	PIPE PILES (INSTALL 30 IN PIPE PILE - 1 IN)	3,585.00	LF	\$	
1490	24618EC	PIPE PILES (FURNISH 72 IN PIPE PILE - 2 IN)	909.00	LF	\$	
1500	24619EC	SPLICE PILES (30 IN PIPE PILE - 1 IN)	13.00	EACH	\$	
1510	24619EC	SPLICE PILES (72 IN PIPE PILE - 2 IN)	3.00	EACH	\$	
		OPEN END INSIDE FIT CUTTING SHOE (72 IN				
1520	24627EC	- 2 IN)	9.00	EACH	\$	
4=0-		OPEN END INSIDE FIT CUTTING SHOE (30 IN				
1530	24627EC	- 1 IN)		EACH		
1540	24628EC	PILE CONSTRICTOR PLATE (72 IN - 2 IN)		EACH		
1550	24629EC	DECORATIVE FENCE PANEL	17.00	EACH	\$	

# Section: 0005 - BRIDGE - EAST APPROACH

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	AMOUNT
1560	02231		STRUCTURE GRANULAR BACKFILL	1,115.00	CUYD	\$	
1570	02599		FABRIC-GEOTEXTILE TYPE IV	328.00	SQYD	\$	
1580	02998		MASONRY COATING	6,760.00	SQYD	\$	
1590	08001		STRUCTURE EXCAVATION-COMMON	2,371.00	CUYD	\$	
1600	08033		TEST PILES (FURNISH - 30 IN PIPE - 1 IN)	441.00	LF	\$	
1610	08033		TEST PILES (INSTALL - 30 IN PIPE - 1 IN)	435.00	LF	\$	

REVISED: 11-26-13 Contract ID: 131212 Page 401 of 403

Page 5 of 7

131212

## **PROPOSAL BID ITEMS**

Report Date 1/26/13

INE	BID CODE	ALT DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP A	MOUNT
620	08033	TEST PILES (FURNISH 17 IN PIPE PILE - 2 IN)	914.00	LF	\$	
630	08033	TEST PILES (INSTALL - 72 IN - 2 IN)	706.00	LF	\$	
640	08100	CONCRETE-CLASS A REVISED: 11-26-13	2,811.00	CUYD	\$	
		CONCRETE-CLASS A MOD (PIPE PILE				
650	08101	INFILL)		CUYD		
660	08104	CONCRETE-CLASS AA REVISED: 11-26-13	4,565.00			
670	08150	STEEL REINFORCEMENT	729,951.00		•	
680	08151	STEEL REINFORCEMENT-EPOXY COATED	1,468,512.00	LB	\$	
690	08160	STRUCTURAL STEEL (APPROACH SPAN, APPROXIMATELY 10,339,811 LBS.)	1.00	LS	\$	
700	08170	SHEAR CONNECTORS (APPROXIMATELY 33,489 LBS.) REVISED: 11-26-13	1.00	LS	\$	
710	08267	NAVIGATION LIGHTING	1.00		·	
720	08500	APPROACH SLAB		SQYD		
730	08820	DRAIN PIPE-6 IN (FIBERGLASS)	270.00	•		
740	20154ND	DRAIN ASSEMBLY		EACH		
750	23233EC	DYNAMIC PILE TESTING (ON WATER - INITIAL)		EACH		
760	23233EC	DYNAMIC PILE TESTING (ON WATER - RESTRIKE)	23 00	EACH	\$	
770	23233EC	DYNAMIC PILE TESTING (ON LAND - RESTRIKE)		EACH		
780	23233EC	DYNAMIC PILE TESTING (ON LAND - INITIAL)		EACH		
790	23538EC	PEDESTRIAN RAIL	1,696.00	LF	\$	
800	23859EC	FINGER EXPANSION JOINT	74.00	LF	\$	
810	23868EC	STRUCTURE LIGHTNING PROTECTION	1.00	LS	\$	
820	24538ED	RAIL SYSTEM TYPE 11	3,378.00	LF	\$	
830	24550EC	VIBRATION MONITORING	1.00	LS	\$	
840	24606ED	HSS BARRIER RAIL - 3 RAIL	1,678.00	LF	\$	
850	24611EC	SEISMIC DAMPERS (END BENTS)	6.00	EACH	\$	
860	24611EC	SEISMIC DAMPERS (PIERS 4 & 5)	6.00	EACH	\$	
870	24614EC	DISK EXPANSION BEARING	12.00	EACH	\$	
880	24616EC	PATH DELINEATION LIGHTING	1.00	LS	\$	
890	24617EC	INSTALL (AT&T DUCTBANK)	1,651.00	LF	\$	
900	24618EC	PIPE PILES (FURNISH - 30 IN - 1 IN)	3,185.00	LF	\$	
910	24618EC	PIPE PILES (INSTALL - 30 IN - 1 IN) PIPE PILES (FURNISH - 72 IN PIPE PILE - 2	3,385.00	LF	\$	
920	24618EC	IN)	1,445.00	LF	\$	
930	24618EC	PIPE PILES (INSTALL - 72 IN PIPE PILE - 2 IN)	1,197.00	LF	\$	
940	24619EC	SPLICE PILES (30 IN PIPE - 1 IN)	13.00	EACH	\$	
950	24619EC	SPLICE PILES (72 IN PIPE PILE - 2 IN)	5.00	EACH	\$	
960	24627EC	OPEN END INSIDE FIT CUTTING SHOE (30 IN - 1 IN)	28.00	EACH	\$	
970	24627EC	OPEN END INSIDE FIT CUTTING SHOE (72 IN - 2 IN)	14.00	EACH	\$	
980	24628EC	PILE CONSTRICTOR PLATE (72 IN - 2 IN)	14.00	EACH	\$	
990	24629EC	DECORATIVE FENCE PANEL	20.00	EACH	\$	

REVISED: 11-26-13 Contract ID: 131212 Page 402 of 403

131212

## **PROPOSAL BID ITEMS**

Page 6 of 7

### Report Date 1/26/13

### SECTION: 0000 - DRIDGE - INAIN SPAN

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY		UNIT PRICEFP	AMOUNT
000	02998		MASONRY COATING REVISED: 11-26-13	5,369.00		\$	
010	08033		TEST PILES (FURNISH 72 IN PIPE PILE - 2 IN)	760.00	LF	\$	
020	08033		TEST PILES (INSTALL 72 IN PIPE PILE - 2 IN)	468.00	LF	\$	
2030	08100		CONCRETE-CLASS A	7,174.00	CUYD	\$	
2040	08101		CONCRETE-CLASS A MOD (PIPE PILE INFILL)	2,066.00	CUYD	\$	
2050	08104		CONCRETE-CLASS AA REVISED: 11-26-13	1,119.00	CUYD	\$	
2060	08150		STEEL REINFORCEMENT	1,463,804.00	LB	\$	
2070	08151		STEEL REINFORCEMENT-EPOXY COATED	458,567.00	LB	\$	
2080	08160 08170		STRUCTURAL STEEL (ARCH SPAN, APPROXIMATELY 4,741,044 LBS.) REVISED: 11-26-13 SHEAR CONNECTORS (APPROXIMATELY 32,503 LBS.)	1.00	LS	\$	
2090	00110		REVISED: 11-26-13	1.00	LS	\$	
2100	08267		NAVIGATION LIGHTING	1.00	LS	\$	
2110	08534		CONCRETE OVERLAY-LATEX			\$	
2120	08752		PAINT CLEARANCE GAUGES	1.00	LS	\$	
2130	08820		DRAIN ASSEMBLY	36.00	LF	\$	
2140 2150	20154ND 23233EC		DRAIN ASSEMBLY DYNAMIC PILE TESTING (ON WATER - INITIAL)		EACH	\$	
2160	23233EC		DYNAMIC PILE TESTING (ON WATER - RESTRIKE)	16.00	EACH	\$	
2170	23538EC		PEDESTRIAN RAIL REVISED: 11-26-13	550.00	LF	\$	
2180	23868EC		STRUCTURE LIGHTNING PROTECTION	1.00	LS	\$	
2190	24112EC		STEEL REINFORCEMENT STAINLESS STEEL REVISED: 11-26-13	283,098.00	LB	\$	
2200	24538ED		RAIL SYSTEM TYPE 11	1,108.00	LF	\$	
2210	24550EC		VIBRATION MONITORING	1.00	LS	\$	
2220	24606ED		HSS BARRIER RAIL - 3 RAIL	550.00	LF	\$	
2230	24608EC		BRIDGE STRAND HANGER-FABRICATE & INSTALL (APPROXIMATE LENGTH - 5,440 LF)	1.00	LS	\$	
2240	24610EC		MODULAR EXPANSION JOINT REVISED: 11-26-13	148.00	LF	\$	
2250	24612EC		SEISMIC ISOLATION BEARING - TYPE A	4.00	EACH	\$	
2260	24613EC		SEISMIC ISOLATION BEARING - TYPE B	2.00	EACH	\$	
2270	24615EC		ARCH FEATURE LIGHTING	1.00	LS	\$	
2280	24616EC		PATH DELINEATION LIGHTING	1.00	LS	\$	
2290	24617EC		INSTALL (AT&T DUCTBANK)	556.00	LF		
2300	24618EC		PIPE PILES (INSTALL 72 IN PIPE PILE -2 IN)	2,568.00	LF		
			PIPE PILES (FURNISH 72 IN PIPE PILES - 2	,			
2310	24618EC		IN)	4,080.00	LF	\$	
2320	24619EC		SPLICE PILES (72 IN PIPE - 2 IN)	12.00	EACH	\$	
2330	24627EC		OPEN END INSIDE FIT CUTTING SHOE (72 IN - 2 IN)	28.00	EACH	\$	
2340	24628EC		PILE CONSTRICTOR PLATE (72 IN - 2 IN)		EACH		
2350	24629EC		DECORATIVE FENCE PANEL		EACH		

Section: 0007 - MOBILIZATION & DEMOBILIZATION

MARSHALL - TRIGG COUNTIES 121GR13D012 - NHPP 0801 (098)

**PROPOSAL BID ITEMS** 

REVISED: 11-26-13 Contract ID: 131212 Page 403 of 403

Page 7 of 7

131212

### Report Date 1/26/13

LINE	BID CODE	ALT	DESCRIPTION	QUANTITY	UNIT	UNIT PRICEFP	AMOUNT
2360	02568		MOBILIZATION	1.00	LS	\$	
2370	02569		DEMOBILIZATION	1.00	LS	\$	